Computerized identification of early ischemic changes in acute stroke in noncontrast CT using deep learning

脑岛 冲程(发动机) 医学 人工智能 放射科 计算机科学 心理学 神经科学 机械工程 工程类
作者
Noriyuki Takahashi,Yuki Shinohara,Toshibumi Kinoshita,Tomomi Ohmura,Keisuke Matsubara,Yongbum Lee,Hideto Toyoshima
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 118-118 被引量:8
标识
DOI:10.1117/12.2507351
摘要

Treatment for patients with acute ischemic stroke is most commonly determined based on findings on noncontrast computerized tomography (CT). Identifying hypoattenuation of the early ischemic changes on CT images is crucial for diagnosis. However, it is difficult to identify hypoattenuation with certainty. We present an atlas-based computerized method using a convolutional neural network (CNN) to identify hypoattenuation in the lentiform nucleus and the insula, two locations where hypoattenuation appears most frequently. The algorithm for this method consisted of anatomic standardization, setting of regions, creation of input images for classification, training on the CNN and classification of hypoattenuation. The regions of the lentiform nucleus and insula were set according to the Alberta Stroke Programme Early CT score (ASPECTS) method, a visual quantitative CT scoring system. AlexNet was used in the classification of the CNN architecture. We applied this method to the lentiform nucleus and insula using a database of 20 patients with right-sided hypoattenuation, 20 patients with left-sided hypoattenuation, and 20 normal subjects. Our method was evaluated using a leave-one-case-out cross-validation test. This new method had an average accuracy of 88.3%, an average sensitivity of 87.5%, and an average specificity of 90% for identifying hypoattenuation in the two regions. These results indicate that this new method has the potential to accurately identify hypoattenuation in the lentiform nucleus and the insula in patients with acute ischemic stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的菲鹰给就让这大雨全都落下的求助进行了留言
2秒前
Halo发布了新的文献求助10
2秒前
2秒前
00发布了新的文献求助30
3秒前
Lynn怯霜静完成签到,获得积分10
3秒前
LIUJC完成签到,获得积分10
4秒前
4秒前
hhhhh完成签到,获得积分20
4秒前
勤劳泽洋完成签到 ,获得积分20
4秒前
Aster完成签到,获得积分10
5秒前
田様应助519采纳,获得10
5秒前
lhappy完成签到,获得积分10
5秒前
梁三柏应助LI采纳,获得10
6秒前
6秒前
整齐碧玉发布了新的文献求助10
6秒前
温柔的墙完成签到,获得积分10
6秒前
6秒前
梁三柏应助懒羊羊大王采纳,获得10
7秒前
Ruan发布了新的文献求助10
7秒前
myLv98完成签到,获得积分10
7秒前
MingyueHuang发布了新的文献求助10
7秒前
54132123完成签到,获得积分10
8秒前
英姑应助追寻安柏采纳,获得10
8秒前
如初应助内向映天采纳,获得10
8秒前
8秒前
8秒前
爱听歌的白莲完成签到,获得积分20
8秒前
超级小卢发布了新的文献求助20
8秒前
香蕉觅云应助7eeze采纳,获得10
9秒前
smile发布了新的文献求助10
11秒前
一罐樱桃酱完成签到,获得积分10
11秒前
11秒前
李爱国应助caoyuya123采纳,获得10
12秒前
惊蛰完成签到,获得积分10
12秒前
小鲤瑜跃龙门完成签到,获得积分10
12秒前
tracey完成签到 ,获得积分10
13秒前
13秒前
lsyt应助科学家采纳,获得10
14秒前
小二郎应助dfc采纳,获得10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Implantable Technologies 500
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Theories of Human Development 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3918484
求助须知:如何正确求助?哪些是违规求助? 3463776
关于积分的说明 10930701
捐赠科研通 3191758
什么是DOI,文献DOI怎么找? 1763918
邀请新用户注册赠送积分活动 854056
科研通“疑难数据库(出版商)”最低求助积分说明 794288