已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics nomogram for differentiating between benign and malignant soft‐tissue masses of the extremities

列线图 无线电技术 单变量 逻辑回归 医学 威尔科克森符号秩检验 Lasso(编程语言) 放射科 精确检验 核医学 恶性肿瘤 多元统计 曼惠特尼U检验 计算机科学 数学 统计 外科 病理 内科学 万维网
作者
Hexiang Wang,Pei Nie,Yujian Wang,Wenjian Xu,Shaofeng Duan,Haisong Chen,Dapeng Hao,Jihua Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:51 (1): 155-163 被引量:52
标识
DOI:10.1002/jmri.26818
摘要

Background Preoperative differentiation between malignant and benign tumors is important for treatment decisions. Purpose/Hypothesis To investigate/validate a radiomics nomogram for preoperative differentiation between malignant and benign masses. Study Type Retrospective. Population Imaging data of 91 patients. Field Strength/Sequence T 1 ‐weighted images (570 msec repetition time [TR]; 17.9 msec echo time [TE], 200–400 mm field of view [FOV], 208–512 × 208–512 matrix), fat‐suppressed fast‐spin‐echo (FSE) T 2 ‐weighted images (T 2 WIs) (4331 msec TR; 87.9 msec TE, 200–400 mm FOV, 312 × 312 matrix), slice thickness 4 mm, and slice spacing 1 mm. Assessment Fat‐suppressed FSE T 2 WIs were selected for extraction of features. Radiomics features were extracted from fat‐suppressed T 2 WIs. A radiomics signature was generated from the training dataset using least absolute shrinkage and selection operator algorithms. Independent risk factors were identified by multivariate logistic regression analysis and a radiomics nomogram was constructed. Nomogram capability was evaluated in the training dataset and validated in the validation dataset. Performance of the nomogram, radiomics signature, and clinical model were compared. Statistical Tests 1) Independent t ‐test or Mann–Whitney U ‐test: for continuous variables. Fisher's exact test or χ 2 test: comparing categorical variables between two groups. Univariate analysis: evaluating associations between clinical/morphological characteristics and malignancy. 2) Least absolute shrinkage and selection operator (LASSO)‐logistic regression model: selection of malignancy features. 3) Significant clinical/morphological characteristics and radiomics signature were input variables for multiple logistic regression analysis. Area under the curve (AUC): evaluation of ability of the nomogram to identify malignancy. Hosmer–Lemeshow test and decision curve: evaluation and validation of nomogram results. Results The radiomics nomogram was able to differentiate malignancy from benignity in the training and validation datasets with an AUC of 0.94. The nomogram outperformed both the radiomics signature and clinical model alone. Data Conclusion This radiomics nomogram is a noninvasive, low‐cost preoperative prediction method combining the radiomics signature and clinical model. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:155–163.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助樊珩采纳,获得10
刚刚
jasonjiang完成签到 ,获得积分0
1秒前
chuu发布了新的文献求助10
5秒前
搜集达人应助樊珩采纳,获得10
7秒前
TRY驳回了桐桐应助
8秒前
10秒前
科研通AI2S应助朱由校采纳,获得10
13秒前
orixero应助樊珩采纳,获得10
13秒前
甜美宛儿发布了新的文献求助10
14秒前
19秒前
五十个小学生完成签到,获得积分10
19秒前
脑洞疼应助樊珩采纳,获得10
20秒前
Steven完成签到,获得积分10
23秒前
24秒前
隐形曼青应助小青梅采纳,获得10
25秒前
科研通AI5应助mini采纳,获得10
27秒前
chuu完成签到,获得积分10
27秒前
甜美宛儿完成签到,获得积分10
30秒前
31秒前
流氓恐龙发布了新的文献求助10
31秒前
33秒前
TRY发布了新的文献求助10
36秒前
ZGH完成签到,获得积分10
36秒前
Jeffery发布了新的文献求助30
38秒前
小青梅完成签到,获得积分10
38秒前
无花果应助Nirvan采纳,获得10
43秒前
小蘑菇应助潇洒的雅阳采纳,获得10
43秒前
江离完成签到 ,获得积分10
46秒前
Lucas应助plant采纳,获得10
46秒前
Cyan完成签到,获得积分10
47秒前
西瓜完成签到 ,获得积分10
49秒前
49秒前
50秒前
50秒前
50秒前
50秒前
50秒前
51秒前
51秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324660
关于积分的说明 10219108
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467