Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques

人工智能 计算机科学 雅卡索引 肝癌 模式识别(心理学) 分割 人工神经网络 分类器(UML) 肝细胞癌 深度学习 医学 癌症研究
作者
Amita Das,U. Rajendra Acharya,Sucheta Panda,Sukanta Sabut
出处
期刊:Cognitive Systems Research [Elsevier BV]
卷期号:54: 165-175 被引量:112
标识
DOI:10.1016/j.cogsys.2018.12.009
摘要

Liver cancer is one of the leading cause of death in all over the world. Detecting the cancer tissue manually is a difficult task and time consuming. Hence, a computer-aided diagnosis (CAD) is used in decision making process for accurate detection for appropriate therapy. Therefore the main objective of this work is to detect the liver cancer accurately using automated method. In this work, we have proposed a new system called as watershed Gaussian based deep learning (WGDL) technique for effective delineate the cancer lesion in computed tomography (CT) images of the liver. A total of 225 images were used in this work to develop the proposed model. Initially, the liver was separated using marker controlled watershed segmentation process and finally the cancer affected lesion was segmented using the Gaussian mixture model (GMM) algorithm. After tumor segmentation, various texture features were extracted from the segmented region. These segmented features were fed to deep neural network (DNN) classifier for automated classification of three types of liver cancer i.e. hemangioma (HEM), hepatocellular carcinoma (HCC) and metastatic carcinoma (MET). We have achieved a classification accuracy of 99.38%, Jaccard index of 98.18%, at 200 epochs using DNN classifier with a negligible validation loss of 0.062 during the classification process. Our developed system is ready to be tested with huge database and can aid the radiologist in detecting the liver cancer using CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助不想看文献采纳,获得10
刚刚
雨兔儿完成签到,获得积分10
2秒前
小小完成签到,获得积分20
3秒前
卡沙巴完成签到,获得积分10
5秒前
6秒前
香蕉觅云应助周小鱼采纳,获得10
7秒前
温暖宛筠完成签到,获得积分10
7秒前
爆米花应助HalaMadrid采纳,获得10
8秒前
匆匆完成签到 ,获得积分10
8秒前
个性涵菡完成签到 ,获得积分10
8秒前
Wangyn完成签到,获得积分10
9秒前
黑宝坨完成签到 ,获得积分10
9秒前
11秒前
duoduo完成签到,获得积分10
13秒前
黑布林大李子完成签到,获得积分0
14秒前
14秒前
mini完成签到,获得积分20
15秒前
周小鱼发布了新的文献求助10
19秒前
明理若南发布了新的文献求助10
21秒前
21秒前
22秒前
于浩完成签到,获得积分10
23秒前
852应助积极的爆米花采纳,获得10
23秒前
脑洞疼应助积极的爆米花采纳,获得10
23秒前
yao完成签到 ,获得积分10
24秒前
开放映冬发布了新的文献求助10
24秒前
lighta0发布了新的文献求助10
27秒前
28秒前
特独斩完成签到 ,获得积分10
30秒前
隐形鸣凤完成签到,获得积分20
31秒前
宋丽娟完成签到,获得积分10
31秒前
HalaMadrid发布了新的文献求助10
32秒前
32秒前
xiaozheng完成签到,获得积分10
33秒前
led完成签到,获得积分10
33秒前
文静的芮完成签到,获得积分10
35秒前
社会主义接班人完成签到 ,获得积分10
35秒前
a3979107完成签到,获得积分10
36秒前
ni完成签到 ,获得积分10
38秒前
38秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726