Feature Enhancement in Medical Ultrasound Videos Using Contrast-Limited Adaptive Histogram Equalization

计算机科学 人工智能 自适应直方图均衡化 计算机视觉 散斑噪声 特征(语言学) 图像质量 斑点图案 模式识别(心理学) 直方图均衡化 直方图 图像(数学) 语言学 哲学
作者
Prerna Singh,Ramakrishnan Mukundan,Rex de Ryke
出处
期刊:Journal of Digital Imaging [Springer Science+Business Media]
卷期号:33 (1): 273-285 被引量:44
标识
DOI:10.1007/s10278-019-00211-5
摘要

Speckle noise reduction algorithms are extensively used in the field of ultrasound image analysis with the aim of improving image quality and diagnostic accuracy. However, significant speckle filtering induces blurring, and this requires the enhancement of features and fine details. We propose a novel framework for both multiplicative noise suppression and robust contrast enhancement and demonstrate its effectiveness using a wide range of clinical ultrasound scans. Our approach to noise suppression uses a novel algorithm based on a convolutional neural network that is first trained on synthetically modeled ultrasound images and then applied on real ultrasound videos. The feature improvement stage uses an improved contrast-limited adaptive histogram equalization (CLAHE) method for enhancing texture features, contrast, resolvable details, and image structures to which the human visual system is sensitive in ultrasound video frames. The proposed CLAHE algorithm also considers an automatic system for evaluating the grid size using entropy, and three different target distribution functions (uniform, Rayleigh, and exponential), and interpolation techniques (B-spline, cubic, and Lanczos-3). An extensive comparative study has been performed to find the most suitable distribution and interpolation techniques and also the optimal clip limit for ultrasound video feature enhancement after speckle suppression. Subjective assessments by four radiologists and experimental validation using three quality metrics clearly indicate that the proposed framework generates superior performance compared with other well-established methods. The processing pipeline reduces speckle effectively while preserving essential information and enhancing the overall visual quality and therefore could find immediate applications in real-time ultrasound video segmentation and classification algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然怀寒完成签到,获得积分10
1秒前
wq完成签到,获得积分10
1秒前
燕万怨发布了新的文献求助10
1秒前
hy完成签到,获得积分10
1秒前
乐乐应助李星星采纳,获得10
1秒前
杭康发布了新的文献求助10
2秒前
公积金股份化完成签到 ,获得积分10
3秒前
GERRARD完成签到,获得积分10
3秒前
BJ_whc完成签到 ,获得积分10
3秒前
刘雨森完成签到,获得积分10
4秒前
1111111111完成签到,获得积分10
4秒前
超超li完成签到,获得积分20
5秒前
mumu三完成签到,获得积分10
6秒前
sparks完成签到,获得积分10
6秒前
WN完成签到,获得积分10
7秒前
大林完成签到,获得积分10
7秒前
犹豫战斗机完成签到,获得积分10
8秒前
8秒前
JamesPei应助念心采纳,获得10
9秒前
鸣蜩阿六完成签到,获得积分10
10秒前
10秒前
dh完成签到,获得积分10
10秒前
yexing完成签到,获得积分10
11秒前
聪明飞飞完成签到,获得积分10
12秒前
先一完成签到,获得积分10
12秒前
科研钓鱼佬完成签到,获得积分10
12秒前
晓风完成签到,获得积分10
12秒前
Yvan完成签到,获得积分10
13秒前
杨冰发布了新的文献求助10
13秒前
隐形曼青应助科研达人采纳,获得30
13秒前
端庄的豆芽完成签到,获得积分10
14秒前
李星星发布了新的文献求助10
15秒前
ShiyuZuo完成签到,获得积分10
16秒前
专注的小松鼠完成签到,获得积分10
16秒前
16秒前
隐形曼青应助Tonald Yang采纳,获得10
16秒前
超帅含双应助鹿叽叽采纳,获得10
16秒前
马克董完成签到,获得积分20
18秒前
陈米米完成签到 ,获得积分10
18秒前
Running完成签到 ,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330170
关于积分的说明 10244733
捐赠科研通 3045558
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800631
科研通“疑难数据库(出版商)”最低求助积分说明 759577