自动氧化
亚硫酸盐
化学
铜
无机化学
亚硫酸钠
硫酸盐
有机化学
钠
作者
Wenjing Wu,Xiaodan Zhao,Guohua Jing,Zuoming Zhou
标识
DOI:10.1016/j.scitotenv.2019.133836
摘要
Sulfite has been recently emerging as an appealing sulfate radical (SO4•-) precursor for efficient treatment of organic contaminants. Due to the negligible autoxidation of sulfite, activators are often introduced to accelerate sulfite autoxidation and the concomitant generation of SO4•-. Present heterogeneous activators are mostly not very effective under mild conditions (pH 7.0-8.0). In this work, efficient activation of sulfite with copper oxides including Cu2O and CuO for iohexol degradation under mild pH conditions is proposed. In a comparison of iohexol degradation efficiency by sulfite autoxidation activated with different metal oxides (Co3O4, CoO, α-Fe2O3, γ-Fe2O3, CuO and Cu2O), CuO and Cu2O with lower toxicity are efficient activators and removal efficiencies of ~95% can be obtained at pH 8.0. SO4•- is identified to be the major species contributing to the removal of iohexol by electron paramagnetic resonance (EPR) spectroscopy and quenching experiment. Based on the effect of ionic strength and copper leaching, sulfite is proposed to interact with copper oxides via inner-sphere coordination. Effect of critical influencing parameters and efficacy of copper oxides in real water matrixes are investigated. The results suggest that using copper oxides as activators is a new alternative to promote sulfite autoxidation process for rapid contaminants degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI