Uncovering patterns in skin and gut microbiota of rainbow trout (Oncorhynchus mykiss): insights from machine learning and feeding trials with sustainable aquafeeds based on yellow mealworm (Tenebrio molitor)

生物 虹鳟 粉虱 肠道菌群 水产养殖 机器学习 鳟鱼 成分 微生物群 鱼粉 动物 人工智能 食品科学 特征选择 生态学 回归 益生菌 生物技术 回归分析 丰度(生态学) 基因组 微生物生态学 概化理论 分类等级 渔业 杂食动物 罗非鱼 水生动物 重复性 动物饲料 选择(遗传算法) 预测建模
作者
Silvio Rizzi,Giulio Saroglia,Violeta Kalemi,Simona Rimoldi,Genciana Terova
出处
期刊:Aquaculture International [Springer Nature]
卷期号:34 (1)
标识
DOI:10.1007/s10499-025-02401-1
摘要

Abstract The aquaculture sector has been progressively transitioning toward environmentally sustainable feed production, with insect meals emerging as viable alternatives to fish meal (FM); however, their effects on the microbiota of fish still remain insufficiently characterized. This study examined gut and skin microbiota in rainbow trout ( Oncorhynchus mykiss ) following complete FM substitution with yellow mealworm ( Tenebrio molitor , TM), utilizing machine learning (ML) to investigate diet-microbiota relationships. To this end, microbial abundance data from a prior in vivo trial were analyzed by means of a structured ML pipeline. On the one hand, classification models assessed the association between microbial profiles and dietary regimens, while, on the other hand, regression models evaluated the predictive capacity of feed ingredient variations on microbial abundance shifts. Within this processing framework, feature selection identified informative taxa across taxonomic levels, enhancing model generalizability and reducing overfitting. Several classification algorithms attained optimal accuracy, whereas regression models showed moderate performance, with error values decreasing from higher to lower taxonomic ranks. In particular, feature selection and explainability analyses identified both diet- and tissue-associated indicators: Cutibacterium , Enhydrobacter , and Lactobacillus in the gut; Chryseobacterium , Flectobacillus , and Sphingopyxis in the skin. The occurrence of Deefgea in both tissue types suggested potential water-fish microbial exchange. In conclusion, despite conventional analyses showing only limited dietary modulation, ML models effectively detected diet- and tissue-specific indicators in rainbow trout following FM substitution with TM, ultimately underscoring the potential of integrating AI-driven techniques with next-generation sequencing to uncover ecological patterns across fish tissue types and taxonomic levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lune15079完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
科研通AI6应助XIXI采纳,获得10
1秒前
1秒前
nianlu发布了新的文献求助10
2秒前
小于子88完成签到,获得积分10
2秒前
辛勤的枫叶完成签到,获得积分10
2秒前
CodeCraft应助lilili采纳,获得30
2秒前
林林发布了新的文献求助10
2秒前
Owen应助刘xiang采纳,获得10
3秒前
小小完成签到,获得积分10
3秒前
4秒前
kimchiyak应助lily采纳,获得10
4秒前
4秒前
健壮洋葱发布了新的文献求助10
4秒前
杨一完成签到,获得积分10
4秒前
张包子发布了新的文献求助10
4秒前
4秒前
lamer发布了新的文献求助10
5秒前
5秒前
樱桃完成签到 ,获得积分10
5秒前
yn发布了新的文献求助10
6秒前
Corey_huang发布了新的文献求助10
6秒前
科研通AI6应助拼搏的芷文采纳,获得10
7秒前
7秒前
田様应助细胞不凋王女士采纳,获得10
7秒前
无花果应助123采纳,获得10
7秒前
7秒前
要减肥的镜子完成签到,获得积分20
7秒前
小二郎应助东哥采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
aq发布了新的文献求助10
7秒前
琳666发布了新的文献求助10
7秒前
易yi发布了新的文献求助10
7秒前
8秒前
mxq完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668193
求助须知:如何正确求助?哪些是违规求助? 4890085
关于积分的说明 15123716
捐赠科研通 4827144
什么是DOI,文献DOI怎么找? 2584504
邀请新用户注册赠送积分活动 1538380
关于科研通互助平台的介绍 1496656