The effect of a post-scan processing denoising system on image quality and morphometric analysis

降噪 人工智能 图像质量 非本地手段 模式识别(心理学) 平滑的 图像处理 神经影像学 噪音(视频) 计算机科学 对比度(视觉) 计算机视觉 数学 医学 图像去噪 图像(数学) 精神科
作者
Noriko Kanemaru,Hidemasa Takao,Shiori Amemiya,Osamu Abe
出处
期刊:Journal of Neuroradiology [Elsevier]
卷期号:49 (2): 205-212 被引量:7
标识
DOI:10.1016/j.neurad.2021.11.007
摘要

MR image quality and subsequent brain morphometric analysis are inevitably affected by noise. The purpose of this study was to evaluate the effectiveness of an artificial intelligence (AI)-based post-scan processing denoising system, intelligent Quick Magnetic Resonance (iQMR), on MR image quality and brain morphometric analysis.We used 1.5T MP-RAGE MR images acquired from the Alzheimer's Disease Neuroimaging Initiative 1 database. The images of 21 subjects were used for cross-sectional analysis and 15 for longitudinal analysis. In the longitudinal analysis, two timepoints over a 2-year interval were used. Each subject was scanned twice at each timepoint. MR images processed with and without the denoising system were compared both visually and objectively using FreeSurfer cortical thickness analysis.The denoising system reduced the noise with good white-gray matter contrast (noise: p < 0.001; contrast: p = 0.49). The mean intraclass correlation coefficients (ICCs) of cortical thickness were slightly better in the images processed with the denoising system (0.739/0.859/0.883; Gaussian smoothing kernel of full width at half maximum = 0/10/20) compared with the unprocessed images (0.718/0.854/0.880). In the longitudinal analysis, the mean ICCs of symmetrized percent change improved in images processed with the denoising system (0.202/0.349/0.431) compared with the unprocessed images (0.167/0.325/0.404). In addition, the detectability of significant cortical thickness atrophy improved with denoising.We confirm that the AI-based denoising system could effectively reduce the noise while retaining the contrast. We also confirm the improvement of the reliability and detectability of brain morphometric analysis with the denoising system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
深情安青应助萝卜干采纳,获得10
1秒前
Ava应助liutong采纳,获得10
1秒前
空勒发布了新的文献求助10
1秒前
wanci应助Fan采纳,获得10
2秒前
2秒前
2秒前
小马甲应助zz采纳,获得10
2秒前
科研通AI6应助rainbow采纳,获得10
2秒前
十月发布了新的文献求助10
3秒前
杨昕发布了新的文献求助10
3秒前
无花果应助ZTT采纳,获得10
4秒前
6秒前
QIUQIU完成签到,获得积分10
6秒前
如意艳血完成签到 ,获得积分10
6秒前
pluto应助大只鱼采纳,获得10
6秒前
6秒前
无极微光应助酷炫小馒头采纳,获得20
6秒前
Apple完成签到,获得积分10
7秒前
zhanglh123完成签到,获得积分10
8秒前
王震完成签到,获得积分10
8秒前
你为什么不学习完成签到 ,获得积分10
9秒前
Richard_Li发布了新的文献求助10
9秒前
9秒前
菜菜完成签到,获得积分10
11秒前
11秒前
沉静的万天完成签到 ,获得积分10
12秒前
CodeCraft应助gaoyalin采纳,获得10
12秒前
RC_Wang发布了新的文献求助10
12秒前
12秒前
C14H10发布了新的文献求助10
13秒前
ZTT完成签到,获得积分10
14秒前
妮妮发布了新的文献求助10
15秒前
15秒前
莹莹完成签到 ,获得积分10
17秒前
17秒前
朱欣宇完成签到,获得积分10
17秒前
希望天下0贩的0应助Precious采纳,获得10
18秒前
cincrady完成签到,获得积分10
19秒前
打打应助爱你一万年采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496863
求助须知:如何正确求助?哪些是违规求助? 4594479
关于积分的说明 14445063
捐赠科研通 4527042
什么是DOI,文献DOI怎么找? 2480630
邀请新用户注册赠送积分活动 1465088
关于科研通互助平台的介绍 1437844