亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Bioinformatics analysis of differently expressed genes in osteoblastic sarcoma and screening of key genes].

骨肉瘤 小桶 基因 生物 计算生物学 基因表达 数据库 遗传学 生物信息学 基因本体论 计算机科学 癌症研究
作者
Ruifen Shen,Zhixin Huang,Xiaoyang Zhu,J H Lin
出处
期刊:PubMed 卷期号:44 (2): 147-154 被引量:1
标识
DOI:10.3760/cma.j.cn112152-20190613-00380
摘要

Objective: To screen the different expressed genes between osteosarcoma and normal osteoblasts, and find the key genes for the occurrence and development of osteosarcoma. Methods: The gene expression dataset GSE33382 of normal osteoblasts and osteosarcoma was obtained from Gene Expression Omnibus (GEO) database. The different expressed genes between normal osteoblasts and osteosarcoma were screened by limma package of R language, and the different expressed genes were analyzed by Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The protein interaction network was constructed by the String database, and the network modules in the interaction network were screened by the molecular complex detection (MCODE) plug-in of Cytoscape software. The different expressed genes contained in the first three main modules screened by MCODE were analyzed by gene ontology (GO) using the BiNGO module of Cytoscape software. The MCC algorithm was used to screen the top 10 key genes in the protein interaction network. The gene expression and survival dataset GSE39055 of osteosarcoma was obtained from GEO database, and the survival analysis was performed by Kaplan-Meier method. The data of 48 patients with osteosarcoma treated in the First Affiliated Hospital of Fujian Medical University from January 2005 to December 2015 were selected for verification. The expression of STC2 protein in osteosarcoma was detected by immunohistochemical method, and the survival analysis was carried out combined with the clinical data of the patients. Results: A total of 874 different expressed genes were identified from GSE33382 dataset, including 402 down-regulated genes and 472 up-regulated genes. KEGG enrichment analysis showed that different expressed genes were mainly related to p53 signal pathway, glutathione metabolism, extracellular matrix receptor interaction, cell adhesion molecules, folate tolerance, and cell senescence. The top 10 key genes in the interaction network were GAS6, IL6, RCN1, MXRA8, STC2, EVA1A, PNPLA2, CYR61, SPARCL1 and FSTL3. STC2 was related to the survival rate of patients with osteosarcoma (P<0.05). The results showed that the expression of STC2 protein was related to tumor size and Enneking stage in 48 cases of osteosarcoma. The median survival time of 25 cases with STC2 high expression was 21.4 months, and that of 23 cases with STC2 low expression was 65.4 months. The survival rate of patients with high expression of STC2 was lower than that of patients with low expression of STC2 (P<0.05). Conclusions: Bioinformatics analysis can effectively screen the different expressed genes between osteosarcoma and normal osteoblasts. STC2 is one of the important predictors for the prognosis of osteosarcoma.目的: 筛选成骨型骨肉瘤与正常成骨细胞的差异表达基因,寻找成骨型骨肉瘤发生、发展的关键基因。 方法: 从Gene Expression Omnibus(GEO)数据库获得正常成骨细胞和骨肉瘤组织的基因表达数据集GSE33382,采用R语言的limma包筛选正常成骨细胞和成骨型骨肉瘤的差异表达基因,对差异表达基因进行京都基因与基因组百科全书(KEGG)通路富集分析。采用String数据库构建蛋白交互网络,应用Cytoscape软件的分子复合物检测(MCODE)插件筛选互作网络中的网络模块,应用Cytoscape软件中的BiNGO模块对MCODE筛选得到的前3个主要模块所包含的差异表达基因进行基因本体(GO)富集分析。采用MCC算法筛选蛋白互作网络中前10个关键基因。从GEO数据库获得骨肉瘤的基因表达和生存数据集GSE39055,采用Kaplan-Meier法进行生存分析。选取2005年1月至2015年12月福建医科大学附属第一医院收治的48例成骨型骨肉瘤患者的资料进行验证,采用免疫组化法测定骨肉瘤组织中STC2蛋白的表达,结合患者的临床资料进行生存分析。 结果: 从GSE33382数据集中共鉴定出差异表达基因874个,其中下调基因402个,上调基因472个。KEGG富集分析显示,差异表达基因主要与p53信号通路、谷胱甘肽代谢、细胞外基质受体相互作用、细胞黏附分子、抗叶酸盐耐受、细胞衰老等通路有关。互作网络中最重要的前10个关键基因为GAS6、IL6、RCN1、MXRA8、STC2、EVA1A、PNPLA2、CYR61、SPARCL1和FSTL3,其中只有STC2的表达与骨肉瘤患者的生存率有关(P<0.05)。验证结果显示,48例成骨型骨肉瘤组织中STC2蛋白表达与肿瘤大小、Enneking分期有关(均P<0.05)。25例STC2高表达,中位生存时间为21.4个月;23例STC2低表达,中位生存时间为65.4个月,STC2高表达组患者的生存率低于低表达组(P<0.05)。 结论: 生物信息学分析方法可有效筛查成骨型骨肉瘤和正常成骨细胞的差异表达基因,STC2是骨肉瘤预后判断的重要预测因子之一。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
天真彩虹完成签到,获得积分10
2秒前
www发布了新的文献求助10
4秒前
6秒前
颖火虫2588完成签到,获得积分10
9秒前
在水一方完成签到 ,获得积分10
10秒前
10秒前
13秒前
搜集达人应助pluvia采纳,获得10
16秒前
21秒前
lili发布了新的文献求助10
26秒前
30秒前
chenchen发布了新的文献求助30
35秒前
37秒前
周旭完成签到,获得积分10
42秒前
42秒前
千纸鹤完成签到 ,获得积分10
44秒前
风清扬应助lili采纳,获得10
45秒前
幽默的书本完成签到 ,获得积分10
48秒前
49秒前
50秒前
婉莹完成签到 ,获得积分0
53秒前
57秒前
迷你的靖雁完成签到,获得积分10
58秒前
1分钟前
vicky完成签到 ,获得积分10
1分钟前
卑微学术人完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助如意的唯雪采纳,获得30
1分钟前
1分钟前
天天快乐应助尊敬乐蕊采纳,获得10
1分钟前
猪仔5号完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
pluvia发布了新的文献求助10
1分钟前
哈基米德应助科研通管家采纳,获得30
1分钟前
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053575
求助须知:如何正确求助?哪些是违规求助? 3591743
关于积分的说明 11413369
捐赠科研通 3317896
什么是DOI,文献DOI怎么找? 1824886
邀请新用户注册赠送积分活动 896263
科研通“疑难数据库(出版商)”最低求助积分说明 817398