人工智能
学习迁移
卷积神经网络
计算机科学
模式识别(心理学)
深度学习
再培训
局部二进制模式
纹理(宇宙学)
计算机视觉
人工神经网络
图像(数学)
机器学习
直方图
业务
国际贸易
出处
期刊:Metals
[MDPI AG]
日期:2022-02-18
卷期号:12 (2): 355-355
被引量:31
摘要
Texture analysis is key to better understanding of the relationships between the microstructures of the materials and their properties, as well as the use of models in process systems using raw signals or images as input. Recently, new methods based on transfer learning with deep neural networks have become established as highly competitive approaches to classical texture analysis. In this study, three traditional approaches, based on the use of grey level co-occurrence matrices, local binary patterns and textons are compared with five transfer learning approaches, based on the use of AlexNet, VGG19, ResNet50, GoogLeNet and MobileNetV2. This is done based on two simulated and one real-world case study. In the simulated case studies, material microstructures were simulated with Voronoi graphic representations and in the real-world case study, the appearance of ultrahigh carbon steel is cast as a textural pattern recognition pattern. The ability of random forest models, as well as the convolutional neural networks themselves, to discriminate between different textures with the image features as input was used as the basis for comparison. The texton algorithm performed better than the LBP and GLCM algorithms and similar to the deep learning approaches when these were used directly, without any retraining. Partial or full retraining of the convolutional neural networks yielded considerably better results, with GoogLeNet and MobileNetV2 yielding the best results.
科研通智能强力驱动
Strongly Powered by AbleSci AI