亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Approaches to Image Texture Analysis in Material Processing

人工智能 学习迁移 卷积神经网络 计算机科学 模式识别(心理学) 深度学习 再培训 局部二进制模式 纹理(宇宙学) 计算机视觉 人工神经网络 图像(数学) 机器学习 直方图 业务 国际贸易
作者
Xiu Liu,Chris Aldrich
出处
期刊:Metals [MDPI AG]
卷期号:12 (2): 355-355 被引量:31
标识
DOI:10.3390/met12020355
摘要

Texture analysis is key to better understanding of the relationships between the microstructures of the materials and their properties, as well as the use of models in process systems using raw signals or images as input. Recently, new methods based on transfer learning with deep neural networks have become established as highly competitive approaches to classical texture analysis. In this study, three traditional approaches, based on the use of grey level co-occurrence matrices, local binary patterns and textons are compared with five transfer learning approaches, based on the use of AlexNet, VGG19, ResNet50, GoogLeNet and MobileNetV2. This is done based on two simulated and one real-world case study. In the simulated case studies, material microstructures were simulated with Voronoi graphic representations and in the real-world case study, the appearance of ultrahigh carbon steel is cast as a textural pattern recognition pattern. The ability of random forest models, as well as the convolutional neural networks themselves, to discriminate between different textures with the image features as input was used as the basis for comparison. The texton algorithm performed better than the LBP and GLCM algorithms and similar to the deep learning approaches when these were used directly, without any retraining. Partial or full retraining of the convolutional neural networks yielded considerably better results, with GoogLeNet and MobileNetV2 yielding the best results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳斩完成签到,获得积分10
6秒前
9秒前
英勇的访蕊完成签到,获得积分10
37秒前
42秒前
44秒前
6666发布了新的文献求助30
48秒前
梅倪发布了新的文献求助10
49秒前
月上柳梢头A1完成签到,获得积分10
52秒前
爆米花应助白华苍松采纳,获得10
1分钟前
1分钟前
1分钟前
出云天花发布了新的文献求助10
1分钟前
1分钟前
Omni发布了新的文献求助20
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1中蓝完成签到 ,获得积分10
1分钟前
在水一方应助yyyy采纳,获得10
1分钟前
xxxxx完成签到,获得积分10
1分钟前
1分钟前
酷炫的紫山完成签到,获得积分10
2分钟前
df完成签到 ,获得积分10
2分钟前
2分钟前
yyyy发布了新的文献求助10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
2分钟前
Bingtao_Lian完成签到 ,获得积分10
2分钟前
2分钟前
勤劳斩发布了新的文献求助10
2分钟前
上官若男应助出云天花采纳,获得10
2分钟前
小二郎应助出云天花采纳,获得10
2分钟前
BowieHuang应助爽2222采纳,获得10
2分钟前
2分钟前
bless完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534189
求助须知:如何正确求助?哪些是违规求助? 4622286
关于积分的说明 14582359
捐赠科研通 4562448
什么是DOI,文献DOI怎么找? 2500169
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450877