Constrained Convolutional Neural Networks: A New Approach Towards General Purpose Image Manipulation Detection

计算机科学 卷积神经网络 人工智能 过程(计算) 图像(数学) 深度学习 任务(项目管理) 探测器 机器学习 上下文图像分类 模式识别(心理学) 特征提取 电信 操作系统 经济 管理
作者
Belhassen Bayar,Matthew C. Stamm
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:13 (11): 2691-2706 被引量:468
标识
DOI:10.1109/tifs.2018.2825953
摘要

Identifying the authenticity and processing history of an image is an important task in multimedia forensics. By analyzing traces left by different image manipulations, researchers have been able to develop several algorithms capable of detecting targeted editing operations. While this approach has led to the development of several successful forensic algorithms, an important problem remains: creating forensic detectors for different image manipulations is a difficult and time consuming process. Furthermore, forensic analysts need general purpose forensic algorithms capable of detecting multiple different image manipulations. In this paper, we address both of these problems by proposing a new general purpose forensic approach using convolutional neural networks (CNNs). While CNNs are capable of learning classification features directly from data, in their existing form they tend to learn features representative of an image's content. To overcome this issue, we have developed a new type of CNN layer, called a constrained convolutional layer, that is able to jointly suppress an image's content and adaptively learn manipulation detection features. Through a series of experiments, we show that our proposed constrained CNN is able to learn manipulation detection features directly from data. Our experimental results demonstrate that our CNN can detect multiple different editing operations with up to 99.97% accuracy and outperform the existing state-of-the-art general purpose manipulation detector. Furthermore, our constrained CNN can still accurately detect image manipulations in realistic scenarios where there is a source camera model mismatch between the training and testing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zxh采纳,获得10
1秒前
LLL完成签到,获得积分10
1秒前
宋晓静完成签到,获得积分10
1秒前
彭于晏应助瘦瘦的枫叶采纳,获得10
1秒前
搜集达人应助kobesakura采纳,获得10
1秒前
科研通AI5应助呦呦又鹿采纳,获得10
1秒前
王铭卓完成签到,获得积分10
1秒前
2秒前
3秒前
英姑应助轻松姒采纳,获得10
3秒前
七天与发布了新的文献求助10
3秒前
星辰大海应助polysaccharide采纳,获得10
4秒前
清风发布了新的文献求助30
5秒前
5秒前
Shirley完成签到 ,获得积分10
5秒前
陈俊雷完成签到 ,获得积分10
5秒前
6秒前
瘦瘦的电线杆完成签到,获得积分10
6秒前
彩色的小懒虫完成签到,获得积分10
6秒前
7秒前
7秒前
读博小菜菜完成签到,获得积分10
7秒前
下课了吧发布了新的文献求助10
7秒前
柯伊达发布了新的文献求助10
7秒前
8秒前
8秒前
王圆完成签到,获得积分10
8秒前
科研通AI5应助温暖芸采纳,获得10
8秒前
8秒前
科研通AI5应助cc采纳,获得10
8秒前
biubiu完成签到,获得积分10
8秒前
子书辞完成签到,获得积分10
9秒前
Denmark发布了新的文献求助10
9秒前
10秒前
在水一方应助moxin采纳,获得10
10秒前
NexusExplorer应助啥也不会采纳,获得10
10秒前
gaga发布了新的文献求助10
10秒前
白一寒发布了新的文献求助10
11秒前
Milktea123完成签到,获得积分10
11秒前
JamesPei应助七天与采纳,获得10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809611
求助须知:如何正确求助?哪些是违规求助? 3354164
关于积分的说明 10368918
捐赠科研通 3070418
什么是DOI,文献DOI怎么找? 1686244
邀请新用户注册赠送积分活动 810863
科研通“疑难数据库(出版商)”最低求助积分说明 766396