肖特基势垒
材料科学
接触电阻
光电子学
晶体管
半导体
锗
调制(音乐)
身体接触
偶极子
纳米技术
硅
电气工程
图层(电子)
化学
电压
工程类
二极管
哲学
有机化学
美学
作者
Gwang-Sik Kim,Tae In Lee,Byung Jin Cho,Hyun‐Yong Yu
摘要
A metal–interlayer–semiconductor (MIS) structure that is realized by inserting an ultrathin interlayer between a contact metal and a semiconductor has been investigated recently as a low-resistance non-alloyed contact structure. However, a comprehensive and systematical investigation of Schottky barrier height (SBH) modulation through the insertion of an interlayer depending on the contact surface orientation has not been conducted despite its importance for its use in multi-gate transistors. Therefore, in this work, the SBH modulation of the MIS contact structure for different contact surface orientations is systematically investigated, and a comprehensive analysis platform of the MIS contact structure is suggested. Two factors, (1) alleviation of Fermi-level pinning due to metal-induced gap states and interface states and (2) formation of the interface dipole, contribute to the SBH modulation in the MIS contact structure. Their contributions depending on the contact surface orientation are evaluated through a comparison of the contact structures on (100)- and (110)-oriented germanium (Ge). These factors and how they should be considered for a certain contact surface in Ge-channel multi-gate transistors are investigated. The investigation and the proposed analysis platform will contribute to the design of high-performance non-alloyed contact schemes for next-generation multi-gate transistors.
科研通智能强力驱动
Strongly Powered by AbleSci AI