已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Energy Recovery Strategy Numerical Simulation for Dual Axle Drive Pure Electric Vehicle Based on Motor Loss Model and Big Data Calculation

对偶(语法数字) 汽车工程 计算机科学 电动汽车 行驶循环 能量(信号处理) 数学 物理 工程类 机械工程 热力学 统计 文学类 艺术 功率(物理)
作者
Huiyuan Xiong,Xionglai Zhu,Ronghui Zhang
出处
期刊:Complexity [Hindawi Publishing Corporation]
卷期号:2018 (1) 被引量:111
标识
DOI:10.1155/2018/4071743
摘要

Aiming at the braking energy feedback control in the optimal energy recovery of the two‐motor dual‐axis drive electric vehicle (EV), the efficiency numerical simulation model based on the permanent magnet synchronous motor loss was established. At the same time, under different speed and braking conditions, based on maximum recovery efficiency and data calculation of motor system, the optimization motor braking torque distribution model was established. Thus, the distribution rule of the power optimization for the front and rear electric mechanism was obtained. This paper takes the Economic Commission of Europe (ECE) braking safety regulation as the constraint condition, and finally, a new regenerative braking torque distribution strategy numerical simulation was developed. The simulation model of Simulink and CarSim was established based on the simulation object. The numerical simulation results show that under the proposed strategy, the average utilization efficiency of the motor system is increased by 3.24% compared with the I based braking force distribution strategy. Moreover, it is 9.95% higher than the maximum braking energy recovery strategy of the front axle. Finally, through the driving behavior of the driver obtained from the big data platform, we analyze how the automobile braking force matches with the driver’s driving behavior. It also analyzes how the automobile braking force matches the energy recovery efficiency. The research results in this paper provide a reference for the future calculation of braking force feedback control system based on big data of new energy vehicles. It also provides a reference for the modeling of brake feedback control system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏侯夏侯完成签到 ,获得积分10
1秒前
gugu应助Lee采纳,获得10
3秒前
SciGPT应助甜甜的夜南采纳,获得10
4秒前
6秒前
8秒前
WJ发布了新的文献求助10
8秒前
傻丢完成签到 ,获得积分10
10秒前
天上白玉京完成签到,获得积分10
10秒前
JamesPei应助你好好好采纳,获得10
11秒前
Nabi完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
15秒前
长江完成签到 ,获得积分10
16秒前
奋斗的绿海完成签到,获得积分10
20秒前
22秒前
23秒前
24秒前
FFFFFF完成签到 ,获得积分10
28秒前
ZW发布了新的文献求助10
28秒前
米奇完成签到,获得积分10
29秒前
Rochester完成签到,获得积分10
29秒前
清茶完成签到,获得积分10
29秒前
5cdc发布了新的文献求助10
31秒前
畅快自行车完成签到 ,获得积分20
33秒前
35秒前
37秒前
38秒前
iNk应助科研通管家采纳,获得20
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
13654135090发布了新的文献求助10
40秒前
40秒前
42秒前
内向映天完成签到 ,获得积分10
42秒前
44秒前
Dasiliy发布了新的文献求助10
44秒前
啊哈哈哈发布了新的文献求助10
45秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369430
关于积分的说明 10455848
捐赠科研通 3089037
什么是DOI,文献DOI怎么找? 1699622
邀请新用户注册赠送积分活动 817423
科研通“疑难数据库(出版商)”最低求助积分说明 770217