A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram

模式识别(心理学) 胃电图 线性判别分析 卷积神经网络 人工智能 规范化(社会学) 波形 分类器(UML) 计算机科学 医学 内科学 电信 人类学 社会学 雷达
作者
Anjulie S. Agrusa,Armen A. Gharibans,Alexis A. Allegra,David C. Kunkel,Todd P. Coleman
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:67 (3): 854-867 被引量:23
标识
DOI:10.1109/tbme.2019.2922235
摘要

Objective: Gastric slow wave abnormalities have been associated with gastric motility disorders. Invasive studies in humans have described normal and abnormal propagation of the slow wave. This study aims to disambiguate the abnormally functioning wave from one of normalcy using multi-electrode abdominal waveforms of the electrogastrogram (EGG). Methods: Human stomach and abdominal models are extracted from computed tomography scans. Normal and abnormal slow waves are simulated along stomach surfaces. Current dipoles at the stomachs surface are propagated to virtual electrodes on the abdomen with a forward model. We establish a deep convolutional neural network (CNN) framework to classify normal and abnormal slow waves from the multi-electrode waveforms. We investigate the effects of non-idealized measurements on performance, including shifted electrode array positioning, smaller array sizes, high body mass index (BMI), and low signal-to-noise ratio (SNR). We compare the performance of our deep CNN to a linear discriminant classifier using wave propagation spatial features. Results: A deep CNN framework demonstrated robust classification, with accuracy above 90% for all SNR above 0 dB, horizontal shifts within 3 cm, vertical shifts within 6 cm, and abdominal tissue depth within 6 cm. The linear discriminant classifier was much more vulnerable to SNR, electrode placement, and BMI. Conclusion: This is the first study to attempt and, moreover, succeed in using a deep CNN to disambiguate normal and abnormal gastric slow wave patterns from high-resolution EGG data. Significance: These findings suggest that multi-electrode cutaneous abdominal recordings have the potential to serve as widely deployable clinical screening tools for gastrointestinal foregut disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zhangkexin发布了新的文献求助10
1秒前
玲儿完成签到,获得积分10
1秒前
jue发布了新的文献求助10
1秒前
pluvia完成签到,获得积分10
2秒前
记忆里的阳光完成签到,获得积分10
2秒前
许初发布了新的文献求助10
3秒前
3秒前
wave完成签到,获得积分10
3秒前
NexusExplorer应助珍珠闹海采纳,获得10
3秒前
3秒前
叶枫完成签到,获得积分10
4秒前
lulu完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
南相完成签到,获得积分10
6秒前
小杜同学发布了新的文献求助10
6秒前
lulu发布了新的文献求助10
6秒前
ting完成签到,获得积分10
7秒前
wyq发布了新的文献求助10
7秒前
小鱼完成签到,获得积分10
8秒前
科研通AI5应助安静青亦采纳,获得10
8秒前
鹤轸发布了新的文献求助10
8秒前
沉默的凝云完成签到,获得积分20
9秒前
大模型应助胡树采纳,获得10
9秒前
ding应助luhanqi采纳,获得10
9秒前
wbing完成签到,获得积分10
9秒前
000000完成签到,获得积分10
10秒前
重要的哈密瓜完成签到 ,获得积分10
10秒前
majuanwei发布了新的文献求助10
10秒前
七七八八发布了新的文献求助10
11秒前
啦啦啦完成签到,获得积分10
11秒前
11秒前
Loooong完成签到,获得积分0
12秒前
兔兔发布了新的文献求助10
12秒前
12秒前
12秒前
科研通AI5应助樊念烟采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031