Direct Heterogeneous Causal Learning for Resource Allocation Problems in Marketing

计算机科学 数学优化 资源配置 钥匙(锁) 直觉 运筹学 收入 人工智能 机器学习 数学 经济 计算机网络 哲学 计算机安全 会计 认识论
作者
Hao Zhou,Shaoming Li,Guibin Jiang,Jiaqi Zheng,Dong Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (4): 5446-5454 被引量:9
标识
DOI:10.1609/aaai.v37i4.25677
摘要

Marketing is an important mechanism to increase user engagement and improve platform revenue, and heterogeneous causal learning can help develop more effective strategies. Most decision-making problems in marketing can be formulated as resource allocation problems and have been studied for decades. Existing works usually divide the solution procedure into two fully decoupled stages, i.e., machine learning (ML) and operation research (OR) --- the first stage predicts the model parameters and they are fed to the optimization in the second stage. However, the error of the predicted parameters in ML cannot be respected and a series of complex mathematical operations in OR lead to the increased accumulative errors. Essentially, the improved precision on the prediction parameters may not have a positive correlation on the final solution due to the side-effect from the decoupled design. In this paper, we propose a novel approach for solving resource allocation problems to mitigate the side-effects. Our key intuition is that we introduce the decision factor to establish a bridge between ML and OR such that the solution can be directly obtained in OR by only performing the sorting or comparison operations on the decision factor. Furthermore, we design a customized loss function that can conduct direct heterogeneous causal learning on the decision factor, an unbiased estimation of which can be guaranteed when the loss convergences. As a case study, we apply our approach to two crucial problems in marketing: the binary treatment assignment problem and the budget allocation problem with multiple treatments. Both large-scale simulations and online A/B Tests demonstrate that our approach achieves significant improvement compared with state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶世玉发布了新的文献求助10
2秒前
tianwu发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
药小博完成签到,获得积分10
6秒前
科目三应助菜宝儿采纳,获得30
8秒前
CipherSage应助wjr采纳,获得10
10秒前
xgx984发布了新的文献求助10
10秒前
小文发布了新的文献求助10
10秒前
CipherSage应助风中的寻凝采纳,获得10
11秒前
Oracle应助ShengQ采纳,获得20
13秒前
小二郎应助豆子采纳,获得10
15秒前
海豚完成签到,获得积分10
15秒前
SYF发布了新的文献求助30
18秒前
清秀千兰完成签到,获得积分10
19秒前
22秒前
笑点低半仙给笑点低半仙的求助进行了留言
22秒前
大排量发布了新的文献求助10
22秒前
zmw完成签到,获得积分10
23秒前
小文完成签到,获得积分10
26秒前
海豚发布了新的文献求助10
26秒前
搜集达人应助xxn采纳,获得10
27秒前
yelis完成签到,获得积分10
29秒前
29秒前
威武从寒发布了新的文献求助20
29秒前
29秒前
xio完成签到,获得积分10
30秒前
852应助兴奋的蜡烛采纳,获得10
30秒前
研友_VZG7GZ应助英俊白莲采纳,获得30
30秒前
31秒前
安生完成签到,获得积分10
34秒前
lone623发布了新的文献求助10
34秒前
Ray发布了新的文献求助10
34秒前
乐乐应助大力水饺采纳,获得10
35秒前
36秒前
36秒前
37秒前
37秒前
我是老大应助青春采纳,获得10
38秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829369
求助须知:如何正确求助?哪些是违规求助? 3372030
关于积分的说明 10470309
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701245
邀请新用户注册赠送积分活动 818327
科研通“疑难数据库(出版商)”最低求助积分说明 770830