Predicting unsteady incompressible fluid dynamics with finite volume informed neural network

压缩性 人工神经网络 动力学(音乐) 体积热力学 机械 压力修正法 有限体积法 统计物理学 计算机科学 物理 人工智能 热力学 声学
作者
Tianyu Li,Shufan Zou,Xinghua Chang,Laiping Zhang,Xiaogang Deng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:24
标识
DOI:10.1063/5.0197425
摘要

The rapid development of deep learning has significant implications for the advancement of computational fluid dynamics. Currently, most pixel-grid-based deep learning methods for flow field prediction exhibit significantly reduced accuracy in predicting boundary layer flows and poor adaptability to geometric shapes. Although graph neural network models for unstructured grid-based unsteady flow prediction have better geometric adaptability, these models suffer from error accumulation in long-term predictions of unsteady flows. More importantly, fully data-driven models often require extensive training time, greatly limiting the rapid update and iteration speed of deep learning models when facing more complex unsteady flows. Therefore, this paper aims to balance the demands for training overhead and prediction accuracy by integrating physical constraints based on the finite volume method into the loss function of the graph neural network. Additionally, it incorporates a twice-message aggregation mechanism inspired by the extended stencil method to enhance the unsteady flow prediction accuracy and geometric shape generalization ability of the graph neural network model on unstructured grids. We focus particularly on the model's predictive accuracy within the boundary layer. Compared to fully data-driven methods, our model achieves better predictive accuracy and geometric shape generalization ability in a shorter training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Davin完成签到,获得积分10
刚刚
刚刚
YukiXu完成签到,获得积分10
1秒前
1秒前
Dream发布了新的文献求助10
1秒前
MM完成签到,获得积分10
1秒前
orixero应助Zac采纳,获得10
1秒前
2秒前
2秒前
123关闭了123文献求助
3秒前
3秒前
judy123发布了新的文献求助10
3秒前
Davin发布了新的文献求助10
4秒前
4秒前
星星完成签到,获得积分10
4秒前
5秒前
5秒前
落后千雁完成签到,获得积分10
5秒前
wen123发布了新的文献求助10
5秒前
meng完成签到,获得积分10
6秒前
何垠禹发布了新的文献求助10
6秒前
nannannan完成签到,获得积分10
6秒前
7秒前
洪伟发布了新的文献求助10
8秒前
8秒前
nannannan发布了新的文献求助10
9秒前
企鹅发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
SciGPT应助littlechy采纳,获得10
9秒前
bkagyin应助紧张的毛衣采纳,获得30
9秒前
air完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
英俊的铭应助假装有昵称采纳,获得10
12秒前
12秒前
超级十三完成签到,获得积分10
13秒前
lujiajia发布了新的文献求助10
13秒前
迅速冥茗发布了新的文献求助10
14秒前
调皮的友儿完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484315
求助须知:如何正确求助?哪些是违规求助? 4584584
关于积分的说明 14398801
捐赠科研通 4514705
什么是DOI,文献DOI怎么找? 2474090
邀请新用户注册赠送积分活动 1460005
关于科研通互助平台的介绍 1433421