Frontiers in Operations: Equitable Data-Driven Facility Location and Resource Allocation to Fight the Opioid Epidemic

阿片类药物过量 阿片类药物使用障碍 差速器(机械装置) 资源配置 类阿片流行病 计算机科学 运筹学 类阿片 医学 数学 (+)-纳洛酮 计算机网络 内科学 工程类 航空航天工程 受体
作者
Joyce Luo,Bartolomeo Stellato
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1229-1244 被引量:3
标识
DOI:10.1287/msom.2023.0042
摘要

Problem definition: The opioid epidemic is a crisis that has plagued the United States for decades. One central issue of the epidemic is inequitable access to treatment for opioid use disorder (OUD), which puts certain populations at a higher risk of opioid overdose. Methodology/results: We integrate a predictive dynamical model and a prescriptive optimization problem to compute high-quality opioid treatment facility and treatment budget allocations for each U.S. state. Our predictive model is a differential equation-based epidemiological model that captures the dynamics of the opioid epidemic. We use a process inspired by neural ordinary differential equations to fit this model to opioid epidemic data for each state and obtain estimates for unknown parameters in the model. We then incorporate this epidemiological model into a corresponding mixed-integer optimization problem (MIP) that aims to minimize the number of opioid overdose deaths and the number of people with OUD. We develop strong relaxations based on McCormick envelopes to efficiently compute approximate solutions to our MIPs that have a mean optimality gap of 3.99%. Our method provides socioeconomically equitable solutions, as it incentivizes investments in areas with higher social vulnerability (from the U.S. Centers for Disease Control’s Social Vulnerability Index) and opioid prescribing rates. On average, when allowing for overbudget solutions, our approach decreases the number of people with OUD by [Formula: see text], increases the number of people in treatment by [Formula: see text], and decreases the number of opioid-related deaths by [Formula: see text] after 2 years compared with the baseline epidemiological model’s predictions. Managerial implications: Our solutions show that policymakers should target adding treatment facilities to counties that have significantly fewer facilities than their population share and are more socially vulnerable. Furthermore, we demonstrate that our optimization approach, guided by epidemiological and socioeconomic factors, should help inform these strategic decisions, as it yields population health benefits in comparison with benchmarks based solely on population and social vulnerability. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0042 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jerry完成签到,获得积分10
2秒前
unfraid发布了新的文献求助10
2秒前
聪慧航空发布了新的文献求助10
3秒前
超级的诗兰完成签到,获得积分10
3秒前
上官若男应助张三采纳,获得10
4秒前
lalala应助KK采纳,获得20
4秒前
4秒前
chen发布了新的文献求助10
4秒前
房产中介发布了新的文献求助10
5秒前
余南发布了新的文献求助10
5秒前
paper发布了新的文献求助10
5秒前
领导范儿应助有魅力听白采纳,获得10
6秒前
生动的芙蓉完成签到,获得积分10
7秒前
Optimistic发布了新的文献求助20
7秒前
汪禹发布了新的文献求助10
7秒前
不安枕头完成签到 ,获得积分10
8秒前
8秒前
Akihi完成签到,获得积分10
9秒前
张美环完成签到 ,获得积分10
10秒前
11秒前
盏盏应助WYZ采纳,获得10
12秒前
Jin完成签到,获得积分10
13秒前
余南完成签到,获得积分10
13秒前
星辰大海应助Smoiy采纳,获得10
14秒前
秋子骞发布了新的文献求助10
14秒前
16秒前
liwang发布了新的文献求助10
16秒前
汪禹完成签到,获得积分10
16秒前
顾矜应助幽默书瑶采纳,获得10
17秒前
芷兰丁香完成签到,获得积分10
18秒前
木冉完成签到 ,获得积分10
19秒前
21秒前
asd发布了新的文献求助10
21秒前
23秒前
有魅力听白完成签到,获得积分10
24秒前
24秒前
十三应助rorocris采纳,获得20
27秒前
春生发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297021
求助须知:如何正确求助?哪些是违规求助? 4446041
关于积分的说明 13838182
捐赠科研通 4331101
什么是DOI,文献DOI怎么找? 2377446
邀请新用户注册赠送积分活动 1372686
关于科研通互助平台的介绍 1338278