Multi-Granularity Contrastive Cross-Modal Collaborative Generation for End-to-End Long-Term Video Question Answering

判别式 计算机科学 粒度 杠杆(统计) 人工智能 自然语言处理 情态动词 答疑 桥接(联网) 机器学习 化学 高分子化学 操作系统 计算机网络
作者
Ting Yu,K. S. Fu,Jian Zhang,Qingming Huang,Jun Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3115-3129 被引量:1
标识
DOI:10.1109/tip.2024.3390984
摘要

Long-term Video Question Answering (VideoQA) is a challenging vision-and-language bridging task focusing on semantic understanding of untrimmed long-term videos and diverse free-form questions, simultaneously emphasizing comprehensive cross-modal reasoning to yield precise answers. The canonical approaches often rely on off-the-shelf feature extractors to detour the expensive computation overhead, but often result in domain-independent modality-unrelated representations. Furthermore, the inherent gradient blocking between unimodal comprehension and cross-modal interaction hinders reliable answer generation. In contrast, recent emerging successful video-language pre-training models enable cost-effective end-to-end modeling but fall short in domain-specific ratiocination and exhibit disparities in task formulation. Toward this end, we present an entirely end-to-end solution for long-term VideoQA: Multi-granularity Contrastive cross-modal collaborative Generation (MCG) model. To derive discriminative representations possessing high visual concepts, we introduce Joint Unimodal Modeling (JUM) on a clip-bone architecture and leverage Multi-granularity Contrastive Learning (MCL) to harness the intrinsically or explicitly exhibited semantic correspondences. To alleviate the task formulation discrepancy problem, we propose a Cross-modal Collaborative Generation (CCG) module to reformulate VideoQA as a generative task instead of the conventional classification scheme, empowering the model with the capability for cross-modal high-semantic fusion and generation so as to rationalize and answer. Extensive experiments conducted on six publicly available VideoQA datasets underscore the superiority of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助哈哈哈哈哈采纳,获得10
1秒前
西西发布了新的文献求助10
2秒前
yst完成签到,获得积分20
2秒前
天天快乐应助义气的丹萱采纳,获得10
3秒前
Treasure完成签到,获得积分10
4秒前
科研通AI5应助清枫采纳,获得10
4秒前
爆米花应助米奇妙妙虫采纳,获得10
5秒前
科研通AI5应助云之上采纳,获得10
5秒前
科研通AI2S应助ssw采纳,获得10
6秒前
9秒前
垃圾桶发布了新的文献求助30
9秒前
10秒前
Hello应助Math4396采纳,获得10
11秒前
小陆发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
沐夏完成签到,获得积分10
14秒前
yst发布了新的文献求助10
15秒前
科研通AI5应助小熊猫采纳,获得30
15秒前
16秒前
合适忆之完成签到,获得积分10
16秒前
16秒前
不要加糖发布了新的文献求助10
17秒前
徐果发布了新的文献求助10
18秒前
yyxmh羽儿发布了新的文献求助10
18秒前
慈祥的蛋挞完成签到,获得积分10
18秒前
jx完成签到,获得积分10
18秒前
19秒前
多情宛海完成签到 ,获得积分10
19秒前
Math4396发布了新的文献求助10
20秒前
妞妞完成签到,获得积分10
20秒前
科研通AI5应助秦pale采纳,获得10
22秒前
22秒前
22秒前
lll完成签到 ,获得积分10
22秒前
金仕王完成签到,获得积分10
22秒前
lxy应助刘艺伟采纳,获得10
23秒前
带久完成签到 ,获得积分20
24秒前
Ai发布了新的文献求助10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150