生物传感器
纳米材料
纳米技术
胶体金
纳米颗粒
材料科学
作者
Zi Ye,Wenjing Liao,Zhaojia Deng,Lingfeng Wang,Bei Wen,Dapeng Zhang,Hailin Wang,Wenjing Xie,Hanyong Peng
标识
DOI:10.1016/j.trac.2024.117724
摘要
DNA-functionalized nanomaterials represent the cutting edge of the convergence between nanoscience and life sciences. The gold nanoparticles (AuNPs), with their versatile attributes, serve as multifunctional carriers in complex environments, supporting diverse physiological activities of DNA. Concurrently, DNA enhances the target specificity and stability of nanomaterials, significantly improving or fine-tuning their performance. This review explores key aspects of DNA-functionalized AuNPs, including their synthesis methods, properties, and biosensing applications. It starts by delving deeply into the interactions between DNA and AuNPs, emphasizing their role in material customization and highlighting the advantages and applicability of each technique. Furthermore, the review thoroughly evaluates the latest synthesis methods developed from shielding the charger repulsion and extremely compressing the physical space. It showcases the potential of DNA-functionalized AuNPs in addressing complex challenges for biosensing applications. This synergistic relationship has propelled advancements in nanotechnology, facilitating the integration of life sciences, medicine, and nanotechnology, and expanding the application domains of these novel biomimetic nanocomposite materials. Therefore, there is an urgent need for in-depth research into the synthesis, structure and function of DNA-functionalized nanomaterials to unravel their pivotal mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI