WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation

分割 计算机科学 人工智能 编码器 深度学习 图像分割 小波变换 小波 模式识别(心理学) 操作系统
作者
Yan Zeng,Jun Li,Zhe Zhao,Wei Liang,Penghui Zeng,Shao‐Dong Shen,Kun Zhang,Chong Shen
出处
期刊:Science Progress [SAGE]
卷期号:107 (2) 被引量:3
标识
DOI:10.1177/00368504241232537
摘要

Nasopharyngeal carcinoma is a malignant tumor that occurs in the epithelium and mucosal glands of the nasopharynx, and its pathological type is mostly poorly differentiated squamous cell carcinoma. Since the nasopharynx is located deep in the head and neck, early diagnosis and timely treatment are critical to patient survival. However, nasopharyngeal carcinoma tumors are small in size and vary widely in shape, and it is also a challenge for experienced doctors to delineate tumor contours. In addition, due to the special location of nasopharyngeal carcinoma, complex treatments such as radiotherapy or surgical resection are often required, so accurate pathological diagnosis is also very important for the selection of treatment options. However, the current deep learning segmentation model faces the problems of inaccurate segmentation and unstable segmentation process, which are mainly limited by the accuracy of data sets, fuzzy boundaries, and complex lines. In order to solve these two challenges, this article proposes a hybrid model WET-UNet based on the UNet network as a powerful alternative for nasopharyngeal cancer image segmentation. On the one hand, wavelet transform is integrated into UNet to enhance the lesion boundary information by using low-frequency components to adjust the encoder at low frequencies and optimize the subsequent computational process of the Transformer to improve the accuracy and robustness of image segmentation. On the other hand, the attention mechanism retains the most valuable pixels in the image for us, captures the remote dependencies, and enables the network to learn more representative features to improve the recognition ability of the model. Comparative experiments show that our network structure outperforms other models for nasopharyngeal cancer image segmentation, and we demonstrate the effectiveness of adding two modules to help tumor segmentation. The total data set of this article is 5000, and the ratio of training and verification is 8:2. In the experiment, accuracy = 85.2% and precision = 84.9% can show that our proposed model has good performance in nasopharyngeal cancer image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大作家完成签到,获得积分20
1秒前
ieee拯救者发布了新的文献求助10
2秒前
2秒前
刘恩瑜完成签到 ,获得积分10
3秒前
4秒前
4秒前
晨曦发布了新的文献求助10
5秒前
自觉的书蝶完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
8秒前
Meteor完成签到 ,获得积分10
8秒前
王sy完成签到 ,获得积分10
9秒前
9秒前
9秒前
Yang发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
ruihan完成签到 ,获得积分10
10秒前
科研通AI6应助郑哈哈采纳,获得10
10秒前
语文陈老师完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
kentonchow应助isonomia采纳,获得80
12秒前
嗯嗯发布了新的文献求助10
12秒前
WenlingChen完成签到,获得积分10
12秒前
桐桐应助wmy0607采纳,获得10
13秒前
小二郎应助xintianli采纳,获得10
14秒前
15秒前
15秒前
empty发布了新的文献求助10
15秒前
15秒前
16秒前
田様应助风趣夜云采纳,获得10
16秒前
高高行云发布了新的文献求助10
16秒前
jj发布了新的文献求助10
16秒前
SciGPT应助薯条一克采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406216
求助须知:如何正确求助?哪些是违规求助? 4524308
关于积分的说明 14097238
捐赠科研通 4438066
什么是DOI,文献DOI怎么找? 2435946
邀请新用户注册赠送积分活动 1428078
关于科研通互助平台的介绍 1406280