已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation

分割 计算机科学 人工智能 编码器 深度学习 图像分割 小波变换 小波 模式识别(心理学) 操作系统
作者
Yan Zeng,Jun Li,Zhe Zhao,Wei Liang,Penghui Zeng,Shao‐Dong Shen,Kun Zhang,Chong Shen
出处
期刊:Science Progress [SAGE Publishing]
卷期号:107 (2) 被引量:1
标识
DOI:10.1177/00368504241232537
摘要

Nasopharyngeal carcinoma is a malignant tumor that occurs in the epithelium and mucosal glands of the nasopharynx, and its pathological type is mostly poorly differentiated squamous cell carcinoma. Since the nasopharynx is located deep in the head and neck, early diagnosis and timely treatment are critical to patient survival. However, nasopharyngeal carcinoma tumors are small in size and vary widely in shape, and it is also a challenge for experienced doctors to delineate tumor contours. In addition, due to the special location of nasopharyngeal carcinoma, complex treatments such as radiotherapy or surgical resection are often required, so accurate pathological diagnosis is also very important for the selection of treatment options. However, the current deep learning segmentation model faces the problems of inaccurate segmentation and unstable segmentation process, which are mainly limited by the accuracy of data sets, fuzzy boundaries, and complex lines. In order to solve these two challenges, this article proposes a hybrid model WET-UNet based on the UNet network as a powerful alternative for nasopharyngeal cancer image segmentation. On the one hand, wavelet transform is integrated into UNet to enhance the lesion boundary information by using low-frequency components to adjust the encoder at low frequencies and optimize the subsequent computational process of the Transformer to improve the accuracy and robustness of image segmentation. On the other hand, the attention mechanism retains the most valuable pixels in the image for us, captures the remote dependencies, and enables the network to learn more representative features to improve the recognition ability of the model. Comparative experiments show that our network structure outperforms other models for nasopharyngeal cancer image segmentation, and we demonstrate the effectiveness of adding two modules to help tumor segmentation. The total data set of this article is 5000, and the ratio of training and verification is 8:2. In the experiment, accuracy = 85.2% and precision = 84.9% can show that our proposed model has good performance in nasopharyngeal cancer image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunnn完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
半斤完成签到 ,获得积分10
5秒前
8秒前
wang5945完成签到 ,获得积分10
9秒前
李健应助UACurry采纳,获得10
10秒前
13秒前
明明完成签到,获得积分10
16秒前
GreenDuane完成签到 ,获得积分0
17秒前
zdy完成签到,获得积分10
17秒前
姚小喵完成签到 ,获得积分10
18秒前
Anlotinib发布了新的文献求助10
18秒前
古铜完成签到 ,获得积分10
19秒前
HRZ完成签到 ,获得积分10
22秒前
冷傲的寒云完成签到,获得积分20
23秒前
FashionBoy应助寒雨采纳,获得10
23秒前
WUHUIWEN完成签到,获得积分10
24秒前
26秒前
27秒前
UACurry发布了新的文献求助10
30秒前
阿渺完成签到,获得积分10
30秒前
31秒前
yuan完成签到 ,获得积分10
32秒前
阿渺发布了新的文献求助10
34秒前
dd完成签到 ,获得积分10
35秒前
UACurry完成签到,获得积分20
35秒前
王木木发布了新的文献求助10
35秒前
科研通AI5应助喜悦夏青采纳,获得10
38秒前
爱打球的小蔡鸡完成签到,获得积分10
39秒前
爆米花应助UACurry采纳,获得10
39秒前
路漫漫其修远兮完成签到 ,获得积分10
40秒前
1111完成签到,获得积分10
44秒前
RONG完成签到 ,获得积分10
47秒前
王木木完成签到 ,获得积分20
48秒前
armpit完成签到,获得积分10
49秒前
黯然完成签到 ,获得积分10
51秒前
香蕉觅云应助cookie486采纳,获得10
51秒前
含蓄戾发布了新的文献求助10
53秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491