Visual-Inertial-Laser-Lidar (VILL) SLAM: Real-Time Dense RGB-D Mapping for Pipe Environments

同时定位和映射 激光雷达 人工智能 计算机视觉 里程计 计算机科学 RGB颜色模型 里程表 惯性测量装置 遥感 机器人 地质学 移动机器人
作者
Tina Yu Tian,Luyuan Wang,Xinzhi Yan,Fujun Ruan,G. Jaya Aadityaa,Howie Choset,Lu Li
标识
DOI:10.1109/iros55552.2023.10341761
摘要

Robotic solutions for pipeline inspection promise enhancement of human labor by automating data acquisition for pipe condition assessments, which are vital for the early detection of pipe anomalies and the prevention of hazardous leakages and explosions. Through simultaneous localization and mapping (SLAM), colorized 3D reconstructions of the pipe's inner surface can be generated, providing a more comprehensive digital record of the pipes compared to conventional vision-only inspection. Designed for generic environments, most SLAM methods suffer limited accuracy and substantial accumulative drift in confined and featureless spaces such as pipelines, due to a lack of suitable sensor hardware and state estimation techniques. In this research, we present VILL-SLAM: a dense RGB-D SLAM algorithm that combines a monocular camera (V), an inertial sensor (I), a ring-shaped laser profiler (L), and a Lidar (L) into a compact sensor package optimized for in-pipe operations. By fusing complementary visual and depth information from the color camera, laser profiling, and Lidar measurement, our method overcomes the challenges of metric scale mapping in conventional SLAM methods, despite its monocular configuration. To further improve localization accuracy, we utilize the pipe geometry to formulate two unique optimization factors that effectively constrain odometer drift. To validate our method, we conducted real-world experiments in physical pipes, comparing the performance of our approach against other state-of-the-art algorithms. The proposed SLAM framework achieved 6.6 times drift improvement with 0.84% mean odometry drift over 22 meters and a mean pointwise 3D scanning error of 0.88mm in 12-inch diameter pipes. This research represents a significant advancement in miniature in-pipe inspection, localization, and mapping sensing techniques. It has the potential to become a core enabling technology for the next generation of highly capable in-pipe robots, capable of reconstructing photo-realistic 3D pipe scans and providing disruptive pipe locating and georeferencing capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助purple采纳,获得10
2秒前
3秒前
xixi发布了新的文献求助10
3秒前
哟哟哟发布了新的文献求助10
4秒前
可爱的函函应助追寻地坛采纳,获得50
4秒前
5秒前
6秒前
汉堡包应助lihaonihao采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
NexusExplorer应助LI采纳,获得10
8秒前
LHL发布了新的文献求助10
10秒前
8D完成签到,获得积分10
11秒前
烟花应助怕孤独的傲柏采纳,获得10
11秒前
kingslee发布了新的文献求助10
11秒前
NexusExplorer应助ovc采纳,获得10
11秒前
酷波er应助szw采纳,获得10
12秒前
14秒前
liguanghan完成签到,获得积分10
14秒前
14秒前
14秒前
打打应助成潇潇采纳,获得10
14秒前
xlk2222完成签到,获得积分10
14秒前
DDup完成签到,获得积分10
16秒前
16秒前
ax8888发布了新的文献求助10
16秒前
孤独千愁发布了新的文献求助10
17秒前
17秒前
骑着蜗牛狂奔完成签到,获得积分20
17秒前
17秒前
tabblk完成签到 ,获得积分10
18秒前
lihaonihao发布了新的文献求助10
19秒前
tph完成签到 ,获得积分10
20秒前
翁戎发布了新的文献求助10
20秒前
20秒前
zhaomr发布了新的文献求助10
21秒前
李琪完成签到,获得积分20
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132