Network Intrusion Traffic Detection Based on Feature Extraction

入侵检测系统 计算机科学 萃取(化学) 特征提取 入侵 特征(语言学) 人工智能 模式识别(心理学) 色谱法 化学 地质学 语言学 哲学 地球化学
作者
Xuecheng Yu,Yan Huang,Yu Zhang,Mingyang Song,Zhenhong Jia
出处
期刊:Computers, materials & continua 卷期号:78 (1): 473-492 被引量:1
标识
DOI:10.32604/cmc.2023.044999
摘要

With the increasing dimensionality of network traffic, extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems (IDS). However, both unsupervised and semisupervised anomalous traffic detection methods suffer from the drawback of ignoring potential correlations between features, resulting in an analysis that is not an optimal set. Therefore, in order to extract more representative traffic features as well as to improve the accuracy of traffic identification, this paper proposes a feature dimensionality reduction method combining principal component analysis and Hotelling’s T2 and a multilayer convolutional bidirectional long short-term memory (MSC_BiLSTM) classifier model for network traffic intrusion detection. This method reduces the parameters and redundancy of the model by feature extraction and extracts the dependent features between the data by a bidirectional long short-term memory (BiLSTM) network, which fully considers the influence between the before and after features. The network traffic is first characteristically downscaled by principal component analysis (PCA), and then the downscaled principal components are used as input to Hotelling’s T2 to compare the differences between groups. For datasets with outliers, Hotelling’s T2 can help identify the groups where the outliers are located and quantitatively measure the extent of the outliers. Finally, a multilayer convolutional neural network and a BiLSTM network are used to extract the spatial and temporal features of network traffic data. The empirical consequences exhibit that the suggested approach in this manuscript attains superior outcomes in precision, recall and F1-score juxtaposed with the prevailing techniques. The results show that the intrusion detection accuracy, precision, and F1-score of the proposed MSC_BiLSTM model for the CIC-IDS 2017 dataset are 98.71%, 95.97%, and 90.22%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助小丸子采纳,获得10
1秒前
彭于晏应助石一采纳,获得10
2秒前
chen发布了新的文献求助10
3秒前
3秒前
852应助66668888采纳,获得30
3秒前
慢慢完成签到 ,获得积分10
4秒前
彭于晏应助蔬菜狗狗采纳,获得10
4秒前
5秒前
LC发布了新的文献求助10
5秒前
Joy发布了新的文献求助10
5秒前
7秒前
香蕉觅云应助Dummers采纳,获得10
7秒前
傻傻的修洁完成签到 ,获得积分10
7秒前
刘xiansheng完成签到,获得积分20
8秒前
8秒前
酷波er应助娇气的万恶采纳,获得10
8秒前
8秒前
8秒前
9秒前
ZZY发布了新的文献求助10
9秒前
10秒前
充电宝应助XYN1采纳,获得10
10秒前
万能图书馆应助一天采纳,获得10
11秒前
啦啦啦完成签到,获得积分20
11秒前
12秒前
12秒前
ying发布了新的文献求助10
12秒前
路遥知马力完成签到 ,获得积分10
12秒前
waaasa发布了新的文献求助10
13秒前
13秒前
乐乐应助windli采纳,获得10
13秒前
13秒前
合适尔槐完成签到 ,获得积分10
13秒前
wanci应助上帝掷骰子采纳,获得10
14秒前
合适如音发布了新的文献求助10
14秒前
小马发布了新的文献求助10
14秒前
15秒前
ZKcrane完成签到,获得积分10
15秒前
15秒前
取名真费劲完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794290
求助须知:如何正确求助?哪些是违规求助? 3339195
关于积分的说明 10294538
捐赠科研通 3055817
什么是DOI,文献DOI怎么找? 1676819
邀请新用户注册赠送积分活动 804770
科研通“疑难数据库(出版商)”最低求助积分说明 762149