流行病模型
Routh-Hurwitz稳定性判据
李雅普诺夫函数
理论(学习稳定性)
控制理论(社会学)
数学
反馈控制
二次方程
还原(数学)
应用数学
控制(管理)
计算机科学
人口学
工程类
非线性系统
人口
人工智能
控制工程
多项式的
数学分析
几何学
机器学习
物理
量子力学
社会学
作者
Lin-Lin Wang,Yong-Hong Fan
标识
DOI:10.1142/s1793524524500050
摘要
In this paper, SIR model with feedback control has been considered. By constructing the Lyapunov function, using the Routh–Hurwitz criterion and the positive definite quadratic form theory, some sufficient conditions have been obtained, and some well-known results have been generalized. It is worth mentioning that if the feedback control variables have an inhibitory effect on the susceptible population and the infected population, the number of basic regeneration of the disease will be reduced. The reduction depends only on the control of the susceptible population, but not on the control of the infected population. This is a very interesting conclusion.
科研通智能强力驱动
Strongly Powered by AbleSci AI