Similarity and dissimilarity relationships based graphs for multimodal change detection

计算机科学 模式识别(心理学) 相似性(几何) 人工智能 回归 图像(数学) 图形 变更检测 分割 数据挖掘 数学 统计 理论计算机科学
作者
Yuli Sun,Lin Lei,Zhang Li,Gangyao Kuang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 70-88 被引量:15
标识
DOI:10.1016/j.isprsjprs.2024.01.002
摘要

Multimodal change detection (CD) is an increasingly interesting yet highly challenging subject in remote sensing. To facilitate the comparison of multimodal images, some image regression methods transform one image to the domain of the other image, allowing for images comparison in the same domain as in unimodal CD. In this paper, we begin by analyzing the limitations of previous image structure based regression models that only rely on similarity relationships. Then, we highlight the significance of incorporating dissimilarity relationships as a complementary approach to more comprehensively characterize and utilize the image structure. In light of this, we propose a novel method for multimodal CD called Similarity and Dissimilarity induced Image Regression (SDIR). Specifically, SDIR construct a similarity based k-nearest neighbors (KNN) graph and a dissimilarity based k-farthest neighbors (KFN) graph, where the former mainly characterizes the low-frequency information and the latter captures the high-frequency information in spectral domain. Therefore, the proposed SDIR that incorporates similarity (low-frequency) and dissimilarity (high-frequency) relationships enables to achieve better regression performance. After completing the image regression, we utilize a Markovian based fusion segmentation model to combine the change fusion and change extraction processes for improving the final CD accuracy. The proposed method's effectiveness is demonstrated through experiments on six real datasets and compared with eleven advanced and widely used methods, achieving 5.6% improvements in the average Kappa coefficient. The source code is accessible at https://github.com/yulisun/SDIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助勇敢的心采纳,获得10
1秒前
林小鱼发布了新的文献求助10
1秒前
物理输出法师完成签到 ,获得积分10
1秒前
张张张xxx完成签到,获得积分10
1秒前
2秒前
2秒前
你说完成签到,获得积分10
3秒前
3秒前
科研通AI6应助大胆铃铛采纳,获得10
4秒前
长情笑柳应助珈蓝采纳,获得10
4秒前
彩色芷发布了新的文献求助10
5秒前
高高很厉害应助聂难敌采纳,获得50
5秒前
浮游应助老实凝竹采纳,获得10
6秒前
Zx_1993应助Ann采纳,获得20
6秒前
6秒前
7秒前
ice完成签到,获得积分10
7秒前
ldx完成签到,获得积分10
8秒前
和谐的敏发布了新的文献求助10
9秒前
碧蓝绮山应助Aicy1111111采纳,获得10
9秒前
星辰大海应助12345采纳,获得10
10秒前
江上挽风吟墨染完成签到,获得积分10
10秒前
王一正完成签到,获得积分10
13秒前
14秒前
王小雨完成签到 ,获得积分10
14秒前
huangyikun完成签到,获得积分10
14秒前
15秒前
17秒前
17秒前
和谐的敏完成签到,获得积分10
18秒前
18秒前
赵梦妍发布了新的文献求助10
19秒前
善学以致用应助低空飞行采纳,获得10
19秒前
zzzxiangyi完成签到,获得积分10
20秒前
LiYanqin完成签到,获得积分10
20秒前
俏皮的听云完成签到,获得积分10
20秒前
NLNL完成签到,获得积分20
20秒前
xt完成签到,获得积分10
21秒前
21秒前
勇敢的心发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930