Similarity and dissimilarity relationships based graphs for multimodal change detection

计算机科学 模式识别(心理学) 相似性(几何) 人工智能 回归 图像(数学) 图形 变更检测 分割 数据挖掘 数学 统计 理论计算机科学
作者
Yuli Sun,Lin Lei,Zhang Li,Gangyao Kuang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 70-88 被引量:15
标识
DOI:10.1016/j.isprsjprs.2024.01.002
摘要

Multimodal change detection (CD) is an increasingly interesting yet highly challenging subject in remote sensing. To facilitate the comparison of multimodal images, some image regression methods transform one image to the domain of the other image, allowing for images comparison in the same domain as in unimodal CD. In this paper, we begin by analyzing the limitations of previous image structure based regression models that only rely on similarity relationships. Then, we highlight the significance of incorporating dissimilarity relationships as a complementary approach to more comprehensively characterize and utilize the image structure. In light of this, we propose a novel method for multimodal CD called Similarity and Dissimilarity induced Image Regression (SDIR). Specifically, SDIR construct a similarity based k-nearest neighbors (KNN) graph and a dissimilarity based k-farthest neighbors (KFN) graph, where the former mainly characterizes the low-frequency information and the latter captures the high-frequency information in spectral domain. Therefore, the proposed SDIR that incorporates similarity (low-frequency) and dissimilarity (high-frequency) relationships enables to achieve better regression performance. After completing the image regression, we utilize a Markovian based fusion segmentation model to combine the change fusion and change extraction processes for improving the final CD accuracy. The proposed method's effectiveness is demonstrated through experiments on six real datasets and compared with eleven advanced and widely used methods, achieving 5.6% improvements in the average Kappa coefficient. The source code is accessible at https://github.com/yulisun/SDIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助MIMIXUAN采纳,获得10
刚刚
刚刚
英姑应助九三采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
在望发布了新的文献求助10
2秒前
2秒前
ding应助小飞侠采纳,获得10
3秒前
yyzhou应助兔子吃胡萝卜采纳,获得10
3秒前
浮游应助奋斗的暖阳采纳,获得20
3秒前
4秒前
5秒前
6秒前
SciGPT应助JusT采纳,获得10
7秒前
haowu发布了新的文献求助10
7秒前
星辰大海应助小夏采纳,获得20
8秒前
Tan发布了新的文献求助10
8秒前
butterflycat完成签到,获得积分10
8秒前
8秒前
无花果应助sky采纳,获得10
8秒前
爆米花应助灵巧汉堡采纳,获得10
9秒前
李爱国应助chenfprich采纳,获得10
9秒前
一川烟叶发布了新的文献求助10
9秒前
XSB完成签到,获得积分10
9秒前
小二郎应助liqqiao采纳,获得10
10秒前
11秒前
TT发布了新的文献求助10
12秒前
西岭发布了新的文献求助10
12秒前
一只象棕熊完成签到,获得积分10
12秒前
phj完成签到,获得积分10
13秒前
万能图书馆应助整齐笑晴采纳,获得10
13秒前
13秒前
yuanzi完成签到,获得积分10
13秒前
眼睛大的星月完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4678631
求助须知:如何正确求助?哪些是违规求助? 4055498
关于积分的说明 12540357
捐赠科研通 3749840
什么是DOI,文献DOI怎么找? 2071174
邀请新用户注册赠送积分活动 1100216
科研通“疑难数据库(出版商)”最低求助积分说明 979684