Similarity and dissimilarity relationships based graphs for multimodal change detection

计算机科学 模式识别(心理学) 相似性(几何) 人工智能 回归 图像(数学) 图形 变更检测 分割 数据挖掘 数学 统计 理论计算机科学
作者
Yuli Sun,Lin Lei,Zhang Li,Gangyao Kuang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 70-88 被引量:14
标识
DOI:10.1016/j.isprsjprs.2024.01.002
摘要

Multimodal change detection (CD) is an increasingly interesting yet highly challenging subject in remote sensing. To facilitate the comparison of multimodal images, some image regression methods transform one image to the domain of the other image, allowing for images comparison in the same domain as in unimodal CD. In this paper, we begin by analyzing the limitations of previous image structure based regression models that only rely on similarity relationships. Then, we highlight the significance of incorporating dissimilarity relationships as a complementary approach to more comprehensively characterize and utilize the image structure. In light of this, we propose a novel method for multimodal CD called Similarity and Dissimilarity induced Image Regression (SDIR). Specifically, SDIR construct a similarity based k-nearest neighbors (KNN) graph and a dissimilarity based k-farthest neighbors (KFN) graph, where the former mainly characterizes the low-frequency information and the latter captures the high-frequency information in spectral domain. Therefore, the proposed SDIR that incorporates similarity (low-frequency) and dissimilarity (high-frequency) relationships enables to achieve better regression performance. After completing the image regression, we utilize a Markovian based fusion segmentation model to combine the change fusion and change extraction processes for improving the final CD accuracy. The proposed method's effectiveness is demonstrated through experiments on six real datasets and compared with eleven advanced and widely used methods, achieving 5.6% improvements in the average Kappa coefficient. The source code is accessible at https://github.com/yulisun/SDIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助含蓄的海云采纳,获得10
刚刚
2秒前
ronll完成签到,获得积分20
3秒前
单薄的竺完成签到,获得积分10
4秒前
朱博完成签到,获得积分10
5秒前
菜小芽发布了新的文献求助10
6秒前
奋斗的夜山完成签到 ,获得积分10
7秒前
xinanan完成签到,获得积分10
9秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
Akim应助gfbh采纳,获得10
10秒前
kevin完成签到,获得积分10
12秒前
凉栀完成签到,获得积分10
13秒前
小二郎应助自觉紫安采纳,获得10
14秒前
FashionBoy应助cc采纳,获得10
15秒前
16秒前
生物科研小白完成签到 ,获得积分10
16秒前
萧水白发布了新的文献求助10
16秒前
17秒前
Akim应助面面采纳,获得10
18秒前
仁者无惧完成签到 ,获得积分10
18秒前
lhy完成签到,获得积分10
18秒前
Dr_zsc完成签到,获得积分10
19秒前
单薄的竺发布了新的文献求助10
23秒前
23秒前
23秒前
gkk完成签到,获得积分20
24秒前
苏雨康完成签到,获得积分10
26秒前
可爱的函函应助yuyuyuan采纳,获得10
27秒前
cc发布了新的文献求助10
29秒前
大约在冬季完成签到,获得积分10
30秒前
gaobowang完成签到,获得积分10
31秒前
32秒前
33秒前
33秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757