TunGPR: Enhancing data-driven maintenance for tunnel linings through synthetic datasets, deep learning and BIM

探地雷达 互操作性 工程类 建筑信息建模 计算机科学 卷积神经网络 数据挖掘 人工智能 雷达 电信 操作系统 相容性(地球化学) 化学工程
作者
Huamei Zhu,Mengqi Huang,Qianbing Zhang
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:145: 105568-105568 被引量:14
标识
DOI:10.1016/j.tust.2023.105568
摘要

Non-destructive Testing (NDT) techniques and data-driven technologies are increasingly applied in underground infrastructure maintenance, which can facilitate predictive monitoring for informed decision-making. Ground Penetrating Radar (GPR) is extensively utilised in rapid condition assessment of tunnel linings, particularly for detecting defects that lead to unforeseen changes of dielectric properties of materials. In this paper, a prototyped framework is proposed, namely TunGPR, for GPR-based tunnel lining assessment by incorporating Building Information Modelling (BIM), synthetic database and deep learning-enabled interpretation. The first module integrates laser-scanned point clouds and GPR Scan-to-BIM of tunnel lining with geological model. Subsequently, interoperability is achieved between the geo-integrated BIM and GPR simulation software. From the dielectric model retrieved from the BIM model, a database is established, considering a variety of condition combinations (i.e., voids, cavities, delamination, and water intrusion) leveraging domain randomisation and Finite-Difference Time-Domain (FDTD) modelling, as well as monitored field data. The dataset is then fed into the diagnostic module underpinned by a dual-rotational Convolutional Neural Network (CNN) that is customised to enhance accuracy and automation of hyperbola detection. Lastly, a preliminary risk assessment matrix is implemented into the BIM model for data management and action prioritisation. These efforts serve as an initial step to validate the feasibility and effectiveness of the GPR-enabled data-driven maintenance for tunnel linings in a BIM-centred framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易安完成签到,获得积分10
刚刚
Rocky发布了新的文献求助10
1秒前
mysci发布了新的文献求助10
1秒前
Emma完成签到,获得积分10
2秒前
科研_小白完成签到,获得积分10
2秒前
黄丫丫完成签到 ,获得积分20
2秒前
doctorwang完成签到,获得积分10
3秒前
微甜柠檬发布了新的文献求助10
3秒前
山川无恙完成签到,获得积分20
3秒前
3秒前
frank完成签到,获得积分10
3秒前
感动清炎完成签到,获得积分10
3秒前
4秒前
Dengera完成签到,获得积分10
4秒前
ytsong发布了新的文献求助10
4秒前
充电宝应助fixit采纳,获得10
5秒前
5秒前
swjs08完成签到,获得积分10
5秒前
羊羊完成签到,获得积分10
5秒前
芳芳完成签到,获得积分10
5秒前
FC完成签到,获得积分10
6秒前
6秒前
6秒前
随风完成签到,获得积分0
7秒前
烟花应助KKLD采纳,获得10
7秒前
orixero应助威仔采纳,获得10
7秒前
scxl2000完成签到,获得积分10
7秒前
yangyang完成签到,获得积分10
8秒前
baolong完成签到,获得积分10
8秒前
释棱完成签到 ,获得积分10
8秒前
胡周瑜完成签到 ,获得积分20
8秒前
顾矜应助小田心采纳,获得10
8秒前
等待日记本完成签到 ,获得积分10
9秒前
子枫发布了新的文献求助10
9秒前
YUU完成签到,获得积分10
9秒前
豆豆发布了新的文献求助10
9秒前
鱼维尼完成签到,获得积分10
9秒前
hiliang完成签到,获得积分10
9秒前
梅子黄时雨完成签到,获得积分10
10秒前
hoshi1018完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642