数学
自回归滑动平均模型
自回归模型
估计员
渐近分布
差异(会计)
应用数学
正态性
一致性(知识库)
统计
瓦尔德试验
移动平均模型
统计推断
推论
强一致性
计量经济学
统计假设检验
自回归积分移动平均
时间序列
计算机科学
人工智能
几何学
会计
业务
作者
Bibi Cai,Enwen Zhu,Shiqing Ling
摘要
Abstract This paper studies the autoregressive and moving average (ARMA) model with time‐functional variance (TFV) noises, called the ARMA‐TFV model. We first establish the consistency and asymptotic normality of its least squares estimator (LSE). The Wald tests and portmanteau tests are constructed based on the theory for variable selection and model checking. A simulation study is carried out to assess the performance of our approach in finite samples, and two real examples are given. It should be mentioned that the process generated from the ARMA‐TFV model is not stationary, and the technique in this paper is nonstandard and may provide insights for future research in this area.
科研通智能强力驱动
Strongly Powered by AbleSci AI