A Multilabel Text Classifier of Cancer Literature at the Publication Level: Methods Study of Medical Text Classification

计算机科学 分类器(UML) 人工智能 机器学习 术语 情报检索 自然语言处理 哲学 语言学
作者
Ying Zhang,M Kellis,Yi Liu,Aihua Li,Xuemei Yang,Xiaoli Tang
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:11: e44892-e44892 被引量:3
标识
DOI:10.2196/44892
摘要

Background Given the threat posed by cancer to human health, there is a rapid growth in the volume of data in the cancer field and interdisciplinary and collaborative research is becoming increasingly important for fine-grained classification. The low-resolution classifier of reported studies at the journal level fails to satisfy advanced searching demands, and a single label does not adequately characterize the literature originated from interdisciplinary research results. There is thus a need to establish a multilabel classifier with higher resolution to support literature retrieval for cancer research and reduce the burden of screening papers for clinical relevance. Objective The primary objective of this research was to address the low-resolution issue of cancer literature classification due to the ambiguity of the existing journal-level classifier in order to support gaining high-relevance evidence for clinical consideration and all-sided results for literature retrieval. Methods We trained a multilabel classifier with scalability for classifying the literature on cancer research directly at the publication level to assign proper content-derived labels based on the “Bidirectional Encoder Representation from Transformers (BERT) + X” model and obtain the best option for X. First, a corpus of 70,599 cancer publications retrieved from the Dimensions database was divided into a training and a testing set in a ratio of 7:3. Second, using the classification terminology of International Cancer Research Partnership cancer types, we compared the performance of classifiers developed using BERT and 5 classical deep learning models, such as the text recurrent neural network (TextRNN) and FastText, followed by metrics analysis. Results After comparing various combined deep learning models, we obtained a classifier based on the optimal combination “BERT + TextRNN,” with a precision of 93.09%, a recall of 87.75%, and an F1-score of 90.34%. Moreover, we quantified the distinctive characteristics in the text structure and multilabel distribution in order to generalize the model to other fields with similar characteristics. Conclusions The “BERT + TextRNN” model was trained for high-resolution classification of cancer literature at the publication level to support accurate retrieval and academic statistics. The model automatically assigns 1 or more labels to each cancer paper, as required. Quantitative comparison verified that the “BERT + TextRNN” model is the best fit for multilabel classification of cancer literature compared to other models. More data from diverse fields will be collected to testify the scalability and extensibility of the proposed model in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc应助盼鸟衔枝来采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
无辜一一应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
简单人杰应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得20
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
无辜一一应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得30
5秒前
shanage应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
hahada发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
shanage应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得20
6秒前
6秒前
不倦应助彭大啦啦采纳,获得10
7秒前
胜天半子完成签到 ,获得积分10
9秒前
自觉南风完成签到,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776193
求助须知:如何正确求助?哪些是违规求助? 3321721
关于积分的说明 10207206
捐赠科研通 3036940
什么是DOI,文献DOI怎么找? 1666486
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757859