Bioactive Peptide Recognition Based on NLP Pre-Train Algorithm

人工智能 计算机科学 鉴定(生物学) 机器学习 任务(项目管理) 序列(生物学) 过程(计算) 模式识别(心理学) 生物 生物化学 工程类 植物 系统工程 操作系统
作者
Likun Jiang,Nan Sun,Yue Zhang,Xinyu Yu,Xiangrong Liu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3809-3819 被引量:5
标识
DOI:10.1109/tcbb.2023.3323295
摘要

Bioactive peptides are defined as peptide sequences within a protein that can regulate important bodily functions through their myriad activities. With the development of machine learning, more computational methods were proposed for bioactive peptides recognition so that this task does not only rely on tedious and time-consuming wet-experiment. But the training and testing process of existing models are limited to small datasets, which affects model performance. Inspired by the success of sequence classification in natural language processing with unlabeled data, we proposed a pre-training method for Bioactive peptides recognition. By pre-trained with large-scale of protein sequences, our method achieved the best performance in multiple functional peptides identification including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory and anti-microbial peptides. Compared with the advanced model, our model's precision, coverage, accuracy and absolute true are improved by 7.2%, 6.9%, 6.1% and 4.2% in the result of 5-fold cross-validation. In addition, the results indicate the model has superior prediction performance in single functional peptides recognition, especially for anti-cancer peptides and anti-microbial peptides which with longer sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
个性的振家完成签到,获得积分10
2秒前
2秒前
YAN应助zgnh采纳,获得10
2秒前
xaoi完成签到 ,获得积分10
3秒前
荒谬发布了新的文献求助10
4秒前
充电宝应助sacrum13采纳,获得10
5秒前
任性冷卉完成签到 ,获得积分10
5秒前
5秒前
科研通AI2S应助鸭米采纳,获得30
5秒前
归尘发布了新的文献求助10
6秒前
zhonghebi发布了新的文献求助10
6秒前
乐橙完成签到,获得积分10
6秒前
李健应助Pendulium采纳,获得10
6秒前
Owen应助ryze采纳,获得10
7秒前
7秒前
7秒前
借款还款完成签到,获得积分10
7秒前
xxfsx应助Channing采纳,获得10
8秒前
李爱国应助威武的大象采纳,获得10
9秒前
大胆的音响完成签到 ,获得积分10
9秒前
Ian完成签到,获得积分10
9秒前
xia_完成签到,获得积分10
9秒前
研友_VZG7GZ应助LLM采纳,获得30
9秒前
10秒前
wuzexin完成签到,获得积分20
11秒前
11秒前
哦呵发布了新的文献求助10
12秒前
12秒前
林狗发布了新的文献求助10
12秒前
自然笑天完成签到,获得积分10
13秒前
14秒前
哈哈哈完成签到,获得积分10
14秒前
追寻灵寒完成签到 ,获得积分10
15秒前
lalala完成签到,获得积分10
15秒前
萱瑄爸爸完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490022
求助须知:如何正确求助?哪些是违规求助? 4588767
关于积分的说明 14421095
捐赠科研通 4520527
什么是DOI,文献DOI怎么找? 2476762
邀请新用户注册赠送积分活动 1462234
关于科研通互助平台的介绍 1435102