清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A gradient mapping guided explainable deep neural network for extracapsular extension identification in 3D head and neck cancer computed tomography images

人工智能 头颈部鳞状细胞癌 淋巴结 计算机科学 预处理器 深度学习 放射科 模式识别(心理学) 医学 头颈部癌 放射治疗 病理
作者
Yibin Wang,Abdur Rahman,William N Duggar,Toms Vengaloor Thomas,Paul Roberts,Srinivasan Vijayakumar,Zhicheng Jiao,Linkan Bian,Haifeng Wang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 2007-2019 被引量:5
标识
DOI:10.1002/mp.16680
摘要

Diagnosis and treatment management for head and neck squamous cell carcinoma (HNSCC) is guided by routine diagnostic head and neck computed tomography (CT) scans to identify tumor and lymph node features. The extracapsular extension (ECE) is a strong predictor of patients' survival outcomes with HNSCC. It is essential to detect the occurrence of ECE as it changes staging and treatment planning for patients. Current clinical ECE detection relies on visual identification and pathologic confirmation conducted by clinicians. However, manual annotation of the lymph node region is a required data preprocessing step in most of the current machine learning-based ECE diagnosis studies. In this paper, we propose a Gradient Mapping Guided Explainable Network (GMGENet) framework to perform ECE identification automatically without requiring annotated lymph node region information. The gradient-weighted class activation mapping (Grad-CAM) technique is applied to guide the deep learning algorithm to focus on the regions that are highly related to ECE. The proposed framework includes an extractor and a classifier. In a joint training process, informative volumes of interest (VOIs) are extracted by the extractor without labeled lymph node region information, and the classifier learns the pattern to classify the extracted VOIs into ECE positive and negative. In evaluation, the proposed methods are well-trained and tested using cross-validation. GMGENet achieved test accuracy and area under the curve (AUC) of 92.2% and 89.3%, respectively. GMGENetV2 achieved 90.3% accuracy and 91.7% AUC in the test. The results were compared with different existing models and further confirmed and explained by generating ECE probability heatmaps via a Grad-CAM technique. The presence or absence of ECE has been analyzed and correlated with ground truth histopathological findings. The proposed deep network can learn meaningful patterns to identify ECE without providing lymph node contours. The introduced ECE heatmaps will contribute to the clinical implementations of the proposed model and reveal unknown features to radiologists. The outcome of this study is expected to promote the implementation of explainable artificial intelligence-assiste ECE detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助优雅的听兰采纳,获得10
6秒前
17秒前
21秒前
ZZzz完成签到 ,获得积分10
23秒前
优雅的听兰完成签到,获得积分10
32秒前
练得身形似鹤形完成签到 ,获得积分10
38秒前
是谁还没睡完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
52秒前
外向的芒果完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
追寻的月光完成签到,获得积分10
1分钟前
1分钟前
1分钟前
sci完成签到 ,获得积分10
1分钟前
脑洞疼应助圆脸的空间啊采纳,获得10
1分钟前
gwbk完成签到,获得积分10
1分钟前
王磊完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
Xu完成签到,获得积分10
1分钟前
1分钟前
nav完成签到 ,获得积分10
1分钟前
1分钟前
圆脸的空间啊完成签到,获得积分20
1分钟前
1分钟前
自然代亦完成签到 ,获得积分10
2分钟前
xiaoxiao完成签到 ,获得积分10
2分钟前
CipherSage应助圆脸的空间啊采纳,获得10
2分钟前
桐桐应助欣喜若灵采纳,获得10
2分钟前
灵巧的灵雁完成签到,获得积分10
2分钟前
2分钟前
欣喜若灵发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
JF123_完成签到 ,获得积分10
2分钟前
2分钟前
简单的笑蓝完成签到 ,获得积分10
2分钟前
wzgkeyantong发布了新的文献求助10
2分钟前
2分钟前
英勇的汉堡完成签到,获得积分10
2分钟前
雪山飞龙完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280504
求助须知:如何正确求助?哪些是违规求助? 3808459
关于积分的说明 11929404
捐赠科研通 3455805
什么是DOI,文献DOI怎么找? 1895189
邀请新用户注册赠送积分活动 944489
科研通“疑难数据库(出版商)”最低求助积分说明 848291