亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Generative AI assisted feedback writing for students' written responses to a physics conceptual question with prompt engineering and few-shot learning

正确性 分级(工程) 数学教育 计算机科学 同行反馈 生成语法 心理学 人工智能 程序设计语言 工程类 土木工程
作者
Tong Wan,Zhongzhou Chen
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2311.06180
摘要

Instructor's feedback plays a critical role in students' development of conceptual understanding and reasoning skills. However, grading student written responses and providing personalized feedback can take a substantial amount of time. In this study, we explore using GPT-3.5 to write feedback to student written responses to conceptual questions with prompt engineering and few-shot learning techniques. In stage one, we used a small portion (n=20) of the student responses on one conceptual question to iteratively train GPT. Four of the responses paired with human-written feedback were included in the prompt as examples for GPT. We tasked GPT to generate feedback to the other 16 responses, and we refined the prompt after several iterations. In stage two, we gave four student researchers the 16 responses as well as two versions of feedback, one written by the authors and the other by GPT. Students were asked to rate the correctness and usefulness of each feedback, and to indicate which one was generated by GPT. The results showed that students tended to rate the feedback by human and GPT equally on correctness, but they all rated the feedback by GPT as more useful. Additionally, the successful rates of identifying GPT's feedback were low, ranging from 0.1 to 0.6. In stage three, we tasked GPT to generate feedback to the rest of the student responses (n=65). The feedback was rated by four instructors based on the extent of modification needed if they were to give the feedback to students. All the instructors rated approximately 70% of the feedback statements needing only minor or no modification. This study demonstrated the feasibility of using Generative AI as an assistant to generating feedback for student written responses with only a relatively small number of examples. An AI assistance can be one of the solutions to substantially reduce time spent on grading student written responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
gszy1975完成签到,获得积分10
1分钟前
留着待会儿完成签到,获得积分10
1分钟前
小王发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
铜锣湾新之助完成签到 ,获得积分10
3分钟前
真真完成签到 ,获得积分10
3分钟前
深情安青应助愉快的Jerry采纳,获得10
5分钟前
Li关闭了Li文献求助
5分钟前
光合作用完成签到,获得积分10
5分钟前
充电宝应助专注的月亮采纳,获得10
5分钟前
草木完成签到 ,获得积分20
5分钟前
CipherSage应助miooo采纳,获得20
6分钟前
wackykao完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
miooo发布了新的文献求助20
6分钟前
天才玩家完成签到,获得积分10
6分钟前
6分钟前
7分钟前
完美世界应助专注的月亮采纳,获得10
7分钟前
小王发布了新的文献求助10
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
牧紊完成签到 ,获得积分10
8分钟前
柚子完成签到 ,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
大胆的小懒猪完成签到 ,获得积分10
9分钟前
大气念蕾完成签到,获得积分10
9分钟前
SCI完成签到,获得积分10
10分钟前
AMENG完成签到,获得积分10
10分钟前
Hans完成签到,获得积分10
10分钟前
10分钟前
10分钟前
小王发布了新的文献求助10
10分钟前
孙老师完成签到 ,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
97发布了新的文献求助30
11分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843231
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540628
捐赠科研通 3106102
什么是DOI,文献DOI怎么找? 1710866
邀请新用户注册赠送积分活动 823809
科研通“疑难数据库(出版商)”最低求助积分说明 774300