A highly flame-retardant, agile fire-alarming and ultrasensitive cotton fabric-based piezoresistive sensor for intelligent fire system

阻燃剂 材料科学 聚磷酸铵 极限氧指数 碳纳米管 复合材料 纳米技术 烧焦 化学工程 燃烧 工程类 化学 有机化学
作者
Jie Zhu,Yongtao Song,Jiacheng Wang,Qirong Yang,Shuqi Ma,Shuai Zhang,Ting‐Yu Chen,Zhenhua Jia
出处
期刊:Polymer Degradation and Stability [Elsevier BV]
卷期号:211: 110338-110338 被引量:17
标识
DOI:10.1016/j.polymdegradstab.2023.110338
摘要

With the high frequency of fires, multifunctional cotton fabrics with high flame retardancy and agile fire-warning ability are urgently needed. Herein, a newly cotton fabric-based piezoresistive sensor (denoted as CF@A-CNTs/APP) with intelligent fire protection and high sensitivity is proposed, which is composed of amino-functionalized carbon nanotubes (A-CNTs) and ammonium polyphosphate (APP) wrapped on cotton fabric (CF) using layer-by-layer self-assembly. The CF@A-CNTs/APP demonstrated excellent flame retardancy due to the synergistic formation of a dense flame retardant layer on the CF surface by A-CNTs and APP. The char residue of CF@A-CNTs/APP reached 44.0 wt% at 700 °C (nitrogen atmosphere), and the limiting oxygen index of CF@A-CNTs/APP was as high as 37.6%. More importantly, the CF@A-CNTs/APP triggered the fire-alarming system within 2 s. Benefiting from the pattern microstructures of double-layers CF and the high conductivity of A-CNTs, the CF@A-CNTs/APP has exhibited a high sensitivity of 3.8 kPa−1 (0 kPa-16.62 kPa). In view of outstanding flame retardancy, high sensitivity and robustness, the CF@A-CNTs/APPs could be integrated into firefighting suits or electronic skins to monitor the behavioral actions and equipment operating conditions. This work provides a novel strategy for a new generation of CF-based sensors with fire resistance and high sensitivity, and offers new insights into the preparation and application of smart fire-resistant materials in the field of the internet of things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的著发布了新的文献求助10
3秒前
萝卜猪发布了新的文献求助10
3秒前
liu发布了新的文献求助20
3秒前
4秒前
7秒前
彭于晏应助zj采纳,获得10
8秒前
黄天发布了新的文献求助10
9秒前
英勇彩虹完成签到,获得积分10
11秒前
偷喝汽水完成签到,获得积分10
11秒前
suwan发布了新的文献求助10
11秒前
brisk应助橘子采纳,获得20
12秒前
Xiang发布了新的文献求助10
12秒前
烟花应助一颗椰子糖耶采纳,获得10
14秒前
Anna完成签到,获得积分10
14秒前
shain完成签到,获得积分10
14秒前
爆米花应助黄天采纳,获得10
18秒前
科研通AI5应助yanziwu94采纳,获得10
20秒前
材料若饥完成签到,获得积分10
22秒前
26秒前
brisk应助橘子采纳,获得20
27秒前
科研通AI5应助萝卜猪采纳,获得10
27秒前
Grace完成签到,获得积分10
29秒前
田様应助微笑的绿旋采纳,获得10
30秒前
yanziwu94发布了新的文献求助10
32秒前
34秒前
TJ完成签到,获得积分10
35秒前
35秒前
40秒前
40秒前
40秒前
韋晴完成签到,获得积分10
41秒前
路过完成签到,获得积分10
42秒前
yu完成签到,获得积分10
42秒前
qing应助机智的著采纳,获得10
45秒前
suwan发布了新的文献求助10
45秒前
45秒前
橘子完成签到,获得积分10
46秒前
46秒前
故意的乐菱完成签到,获得积分10
47秒前
Freda完成签到,获得积分10
48秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831605
求助须知:如何正确求助?哪些是违规求助? 3373811
关于积分的说明 10481474
捐赠科研通 3093752
什么是DOI,文献DOI怎么找? 1702983
邀请新用户注册赠送积分活动 819267
科研通“疑难数据库(出版商)”最低求助积分说明 771328