Integration of DNA Methylation, MicroRNAome, Degradome, and Transcriptome Provides Insights into Petunia Anther Development

牵牛花 生物 转录组 DNA甲基化 雄蕊 基因 遗传学 拟南芥 脱甲基酶 植物 基因表达 表观遗传学 突变体 花粉
作者
Yuanzheng Yue,Wuwei Zhu,Jiahui Wang,Tengteng Wang,Lisha Shi,Hannah Rae Thomas,Huirong Hu,Lianggui Wang
出处
期刊:Plant and Cell Physiology [Oxford University Press]
被引量:1
标识
DOI:10.1093/pcp/pcae126
摘要

Abstract Petunia hybrida is an annual herb flower that is prevalently cultivated both in public landscaping and home gardening. Anthers are vital reproductive organs for plants, but the molecular mechanism controlling petunia anther development remains elusive. In this work, we combined DNA methylation, microRNAome, degradome, and transcriptome data to generate a comprehensive resource focused on exploring the complex molecular mechanism of petunia anther development. This study shows that DNA methylation could have an important impact in repressing the anther expressed genes in the late stages of anther maturation. A total of 8096 anther-preferential genes and 149 microRNAs (miRNAs) were identified that highly expressed in the five typical petunia anthers developmental stages. Gene Ontology enrichment analysis of differentially expressed genes as well as miRNAs target genes revealed that metabolic, cellular, and single-organism processes were significantly activated during the anther maturation processes. Moreover, a co-expression regulatory network for five typical anther development stages was constructed based on transcriptomic data, in which two hub transcription factors, PhERF48 and PhMS1, were demonstrated to be important regulatory genes for male fertility. Further more, two DNA demethylase proteins (PhDME and PhDML3) and three Methyl-CpG-binding-domain proteins (PhMBD2, PhMBD3, and PhMBD4) were identified as potential critical DNA methylation regulators in petunia anther development. Our results provide new knowledge regarding the regulatory mechanism of petunia anther development, which will support the breeding of novel sterile petunia lines in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助苹果满天采纳,获得10
刚刚
Li完成签到,获得积分10
刚刚
亮倪力完成签到,获得积分10
刚刚
杰_骜不驯完成签到,获得积分10
刚刚
1秒前
黄黄黄发布了新的文献求助10
1秒前
陈宇华完成签到,获得积分10
1秒前
黑猫黑猫发布了新的文献求助10
1秒前
搜集达人应助清风明月采纳,获得10
2秒前
斯文败类应助Wangjingxuan采纳,获得10
2秒前
研友_VZG7GZ应助闲鱼采纳,获得30
2秒前
2秒前
小蘑菇应助闾丘山菡采纳,获得10
2秒前
梦XING发布了新的文献求助10
2秒前
丘比特应助hu采纳,获得10
2秒前
2秒前
烟花应助玿琤采纳,获得10
2秒前
2秒前
Ava应助学术蝗虫年猪采纳,获得10
2秒前
不如看海完成签到 ,获得积分10
2秒前
一天完成签到,获得积分10
3秒前
abcdqqqqqqqqqqqq完成签到,获得积分10
3秒前
cc发布了新的文献求助10
4秒前
云竹丶完成签到,获得积分10
5秒前
刘婧发布了新的文献求助10
5秒前
天天快乐应助萨芬采纳,获得10
5秒前
5秒前
5秒前
墨雪归青发布了新的文献求助10
6秒前
灰灰喵完成签到 ,获得积分10
6秒前
6秒前
流沙无言完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
wh927发布了新的文献求助20
8秒前
8秒前
SY发布了新的文献求助10
8秒前
风中芷容完成签到 ,获得积分10
9秒前
lyznbhh发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659205
求助须知:如何正确求助?哪些是违规求助? 4827677
关于积分的说明 15085891
捐赠科研通 4817891
什么是DOI,文献DOI怎么找? 2578393
邀请新用户注册赠送积分活动 1533047
关于科研通互助平台的介绍 1491746