A tough soft–hard interface in the human knee joint driven by multiscale toughening mechanisms

材料科学 韧性 复合材料 刚度 极限抗拉强度 模数 纳米技术
作者
Wenyue Li,Xiaozhao Wang,Renwei Mao,Dong Li,Hongxu Meng,Ru Zhang,Jinghua Fang,Zhengzhong Kang,Boxuan Wu,W. F. Mader,Xudong Yao,Chang Xie,Rui Li,Jin Wang,Xiao Chen,Xihao Pan,Weiqiu Chen,Wangping Duan,Huajian Gao,Hongwei Ouyang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (4)
标识
DOI:10.1073/pnas.2416085122
摘要

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root–bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan. Here, we investigated the multiscale graded mineralization structure and their strengthening mechanisms within the 30-micron soft–hard interface at the root–bone junction. This graded interface, featuring interdigitated structures and an exponential increase in modulus, undergoes a phase transition from amorphous calcium phosphate (ACP) to gradually matured hydroxyapatite (HAP) crystals, regulated by location-specific distributed biomolecules. In coordination with collagen fibril deformation and reorientation, the in situ tensile mechanical experiments and molecular dynamic simulations revealed that immature ACP particles debond from the collagenous matrix and translocate to dissipate energy, while the progressively matured HAP crystals with high stiffness pins propagating cracks, thereby enhancing both the toughness and fatigue resistance of the interface. To further validate our findings, we built biomimetic soft–hard interfaces with phase-transforming mineralization which exhibited boosted strength, toughness, and interface adhesion. This interface model is generalizable to other material joints and provides a blueprint for developing robust soft–hard composites across various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助dddddd采纳,获得10
1秒前
大白完成签到 ,获得积分10
2秒前
Accept完成签到,获得积分10
2秒前
善学以致用应助guozizi采纳,获得10
4秒前
5秒前
小玉应助WUWEI采纳,获得20
5秒前
健康的雁凡完成签到,获得积分10
7秒前
lll完成签到,获得积分10
9秒前
乐乐应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得30
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
尤水绿应助科研通管家采纳,获得20
11秒前
Owen应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
科研通AI2S应助Lyric采纳,获得10
11秒前
datang完成签到,获得积分10
13秒前
13秒前
14秒前
zgz发布了新的文献求助10
15秒前
芜湖发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
17秒前
hu完成签到 ,获得积分10
17秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844493
求助须知:如何正确求助?哪些是违规求助? 3386880
关于积分的说明 10546518
捐赠科研通 3107344
什么是DOI,文献DOI怎么找? 1711747
邀请新用户注册赠送积分活动 824152
科研通“疑难数据库(出版商)”最低求助积分说明 774573