Self-supervised contrastive learning with time-frequency consistency for few-shot bearing fault diagnosis

一致性(知识库) 断层(地质) 计算机科学 弹丸 一次性 方位(导航) 时频分析 人工智能 语音识别 模式识别(心理学) 计算机视觉 材料科学 地质学 工程类 机械工程 地震学 冶金 滤波器(信号处理)
作者
Xiaoyun Gong,Y. Wei,Wenliao Du,Yonggui Gao,Tengfei Guan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (6): 066204-066204
标识
DOI:10.1088/1361-6501/add9b4
摘要

Abstract Deep learning technology has made significant progress in fault diagnosis. However, in real-world industrial settings, most existing methods require substantial labeled data for training, while harsh operating conditions and data collection constraints often result in scarce fault samples. This limitation significantly impairs their diagnostic performance in practical applications. To address this challenge, we propose a few-shot fault diagnosis approach based on a time-frequency contrastive learning (TF-CL) framework. The TF-CL framework adopts a pre-training and downstream task pipeline, enabling the model to automatically learn and extract multi-perspective features from unlabeled data in self-supervised conditions. During the pre-training, dedicated encoders separately extract time-domain and frequency-domain feature representations from abundant unlabeled samples. The extracted features are then projected into a shared time-frequency space using a projector. To ensure that multi-perspective features can be extracted from unlabeled data, this paper introduces a time-frequency consistency loss function, constructed using novel positive and negative sample pairs. In the downstream task, the TF-CL model is combined with a multilayer perceptron classifier and optimized fine-tuned end-to-end using the limited labeled data. Gradient updates during downstream training further refine the learned feature representations, enhancing their adaptability to target classification tasks. The superiority of TF-CL was demonstrated through a variety of fault diagnosis experiments conducted on both public and self-collected datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助wqy采纳,获得10
刚刚
ww发布了新的文献求助10
1秒前
1秒前
2秒前
123关注了科研通微信公众号
2秒前
箱箱完成签到,获得积分10
2秒前
Kuzu完成签到,获得积分10
4秒前
共享精神应助少7一点8采纳,获得10
4秒前
春信共竹知完成签到,获得积分10
4秒前
4秒前
4秒前
aaa发布了新的文献求助10
5秒前
6秒前
jerry完成签到,获得积分10
6秒前
严珍珍完成签到 ,获得积分10
6秒前
6秒前
正正正发布了新的文献求助10
7秒前
7秒前
小六九完成签到 ,获得积分10
8秒前
无花果应助ninomae采纳,获得30
9秒前
诗谙发布了新的文献求助10
9秒前
张豪杰发布了新的文献求助10
9秒前
小猪快跑发布了新的文献求助10
10秒前
大模型应助aaa采纳,获得10
10秒前
敏锐的辣椒投手完成签到,获得积分10
10秒前
ww完成签到,获得积分10
11秒前
11秒前
松山湖宗师发布了新的文献求助100
11秒前
chen发布了新的文献求助10
12秒前
13秒前
13秒前
甄泽森发布了新的文献求助10
14秒前
Jarvis完成签到,获得积分10
15秒前
15秒前
胡涂涂发布了新的文献求助10
16秒前
123发布了新的文献求助10
18秒前
18秒前
20秒前
活泼蜡烛完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4809993
求助须知:如何正确求助?哪些是违规求助? 4123840
关于积分的说明 12758977
捐赠科研通 3859790
什么是DOI,文献DOI怎么找? 2124735
邀请新用户注册赠送积分活动 1146409
关于科研通互助平台的介绍 1039760