Self-supervised contrastive learning with time-frequency consistency for few-shot bearing fault diagnosis

一致性(知识库) 断层(地质) 计算机科学 弹丸 一次性 方位(导航) 时频分析 人工智能 语音识别 模式识别(心理学) 计算机视觉 材料科学 地质学 工程类 机械工程 地震学 冶金 滤波器(信号处理)
作者
Xiaoyun Gong,Y. Wei,Wenliao Du,Yonggui Gao,Tengfei Guan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (6): 066204-066204
标识
DOI:10.1088/1361-6501/add9b4
摘要

Abstract Deep learning technology has made significant progress in fault diagnosis. However, in real-world industrial settings, most existing methods require substantial labeled data for training, while harsh operating conditions and data collection constraints often result in scarce fault samples. This limitation significantly impairs their diagnostic performance in practical applications. To address this challenge, we propose a few-shot fault diagnosis approach based on a time-frequency contrastive learning (TF-CL) framework. The TF-CL framework adopts a pre-training and downstream task pipeline, enabling the model to automatically learn and extract multi-perspective features from unlabeled data in self-supervised conditions. During the pre-training, dedicated encoders separately extract time-domain and frequency-domain feature representations from abundant unlabeled samples. The extracted features are then projected into a shared time-frequency space using a projector. To ensure that multi-perspective features can be extracted from unlabeled data, this paper introduces a time-frequency consistency loss function, constructed using novel positive and negative sample pairs. In the downstream task, the TF-CL model is combined with a multilayer perceptron classifier and optimized fine-tuned end-to-end using the limited labeled data. Gradient updates during downstream training further refine the learned feature representations, enhancing their adaptability to target classification tasks. The superiority of TF-CL was demonstrated through a variety of fault diagnosis experiments conducted on both public and self-collected datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdsfd发布了新的文献求助10
1秒前
ding应助zky采纳,获得10
3秒前
pihou应助海的呼唤采纳,获得10
3秒前
4秒前
5秒前
肖旻发布了新的文献求助10
5秒前
dengdeng发布了新的文献求助30
6秒前
Kasom完成签到 ,获得积分10
7秒前
7秒前
7秒前
达乐发布了新的文献求助10
9秒前
木子发布了新的文献求助10
10秒前
后会无期完成签到,获得积分10
10秒前
11秒前
13秒前
14秒前
qiqi完成签到 ,获得积分10
15秒前
耿耿完成签到 ,获得积分10
15秒前
Winter完成签到,获得积分10
16秒前
lhy完成签到,获得积分10
17秒前
18秒前
孙刚完成签到 ,获得积分10
18秒前
19秒前
20秒前
Pony发布了新的文献求助10
23秒前
Neo应助JiadePeng采纳,获得10
23秒前
冷静映寒发布了新的文献求助10
24秒前
YL完成签到 ,获得积分10
26秒前
愉快的老三完成签到,获得积分10
27秒前
八九寺完成签到,获得积分10
30秒前
32秒前
酥脆多汁的大油条完成签到,获得积分10
32秒前
lqllll完成签到,获得积分10
33秒前
34秒前
大个应助干冷安采纳,获得10
37秒前
37秒前
研友_nqr2pZ完成签到,获得积分10
39秒前
达乐发布了新的文献求助10
40秒前
40秒前
碑海北发布了新的文献求助10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171129
求助须知:如何正确求助?哪些是违规求助? 3706599
关于积分的说明 11695134
捐赠科研通 3392446
什么是DOI,文献DOI怎么找? 1860702
邀请新用户注册赠送积分活动 920531
科研通“疑难数据库(出版商)”最低求助积分说明 832740