Data-driven characterization of near-surface velocity in the San Francisco bay area: A stationary and spatially varying approach

算法 人工智能 地质学 计算机科学
作者
Grigorios Lavrentiadis,Elnaz Seylabi,Fei Xia,Hesam Tehrani,Domniki Asimaki,David McCallen
出处
期刊:Earthquake Spectra [SAGE]
标识
DOI:10.1177/87552930251320666
摘要

This study presents the formulation of two new sedimentary velocity models (SVMs) applied to the San Francisco Bay Area (SFBA) to improve the near-surface representation of shear-wave velocity ( V S ) for large-scale, broadband numerical simulations, with the ultimate goal of enhancing the representation of the sedimentary layers in community velocity model. The first velocity model is stationary and is based solely on the time-average shear-wave velocity of the top 30 m ( V S 30 ); the second velocity model is spatially varying and has location-specific adjustments. They were developed using a dataset of 200 measured V S profiles. Both models were formulated within a hierarchical Bayesian framework, using a parameterization that ensures robust scaling. The spatially varying model includes a slope adjustment term modeled as a Gaussian process to capture site-specific effects based on location. Residual analysis shows that both models are unbiased for V S values up to 1000 m/s. Along-depth variability models were also developed using within-profile residuals. The proposed models show higher V S in the South Bay, East Bay, and Livermore Valley compared to the USGS SFBA velocity model by a factor of two or more in some cases. Goodness-of-fit (GOF) comparisons using one-dimensional (1D) linear site response analysis at selected sites demonstrate that the proposed models outperform the USGS SFBA velocity model in capturing near-surface amplification across a broad frequency range. Incorporating along-depth variability further improves the GOF scores by reducing over-amplification at high frequencies. These results underscore the importance of integrating data-driven models of the shallow crust, like the ones presented here, in coarser regional community velocity models to enhance regional seismic hazard assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qizhichao完成签到,获得积分10
1秒前
1秒前
1秒前
qtsh发布了新的文献求助10
2秒前
你好发布了新的文献求助10
2秒前
3秒前
如风随水发布了新的文献求助10
4秒前
yz发布了新的文献求助10
4秒前
4秒前
5秒前
微风发布了新的文献求助10
7秒前
7秒前
Su发布了新的文献求助10
8秒前
9秒前
鸭鸭乐园发布了新的文献求助10
10秒前
Jiang发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
所所应助yz采纳,获得10
12秒前
12秒前
xcc完成签到,获得积分10
12秒前
13秒前
xiaomi发布了新的文献求助10
13秒前
13秒前
江颖芋发布了新的文献求助10
13秒前
坦率铅笔完成签到,获得积分10
14秒前
nms170520完成签到,获得积分10
16秒前
香蕉觅云应助Su采纳,获得10
17秒前
17秒前
19秒前
陈强完成签到,获得积分10
20秒前
JJ发布了新的文献求助10
20秒前
在水一方应助三井采纳,获得10
21秒前
21秒前
鸭鸭乐园完成签到,获得积分10
23秒前
25秒前
无私醉蝶应助科研通管家采纳,获得10
26秒前
26秒前
SONG完成签到 ,获得积分10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532789
求助须知:如何正确求助?哪些是违规求助? 4621444
关于积分的说明 14578210
捐赠科研通 4561414
什么是DOI,文献DOI怎么找? 2499282
邀请新用户注册赠送积分活动 1479215
关于科研通互助平台的介绍 1450443