Synergistic Drug Combination Prediction via Dual-level Feature Aggregation and Knowledge Graph-based Deep Neural Network

计算机科学 人工神经网络 人工智能 特征(语言学) 图形 对偶(语法数字) 模式识别(心理学) 机器学习 数据挖掘 理论计算机科学 语言学 文学类 哲学 艺术
作者
Ying Zuo,Yan Zhang,Li Wang,YU Jian-ping,Jiawei Luo,Qiu Xiao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2025.3567108
摘要

Identifying synergistic drug combinations is a critical but difficult challenge in cancer treatment, owing to the sheer complexity and enormous number of possible drug combinations. However, most existing computational methods rely on a single data perspective and often overlooking the complexity of interactions between different biological entities. Furthermore, they fail to fully integrate the intrinsic properties of drugs and cell lines with the broader biological relationships that play a crucial role in drug synergy. To address these challenges, we propose a novel framework called LGSyn that integrates two types of information: local features, including molecular fingerprints, descriptors, and gene expression profiles, as well as global features that encompass broader biological interactions, including drug-protein, protein-cell line, protein-protein, and cell line-tissue interactions. By combining these two types of features, LGSyn leverages the full spectrum of biological knowledge to predict drug synergy. In LGSyn, we developed three fusion strategies to effectively integrate local and global information and identify the most suitable strategy. The resulting fused feature vectors are then fed into a deep neural network for training and synergy prediction. Experimental results demonstrate that the proposed method outperforms current state-of-the-art models, achieving superior accuracy and stability in drug synergy prediction. The source code of LGSyn is publicly available at https://github.com/1zuoying/LGSyn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钢铁之心发布了新的文献求助10
1秒前
无花果应助Lirong888采纳,获得10
1秒前
bobo发布了新的文献求助10
1秒前
太叔叫兽发布了新的文献求助10
2秒前
2秒前
2秒前
Owen应助lili采纳,获得10
2秒前
3秒前
Hilda007应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
Blurred完成签到,获得积分10
4秒前
changping应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
天天快乐应助nono采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
上官若男应助阿正嗖啪采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
聪慧的正豪应助十八采纳,获得10
5秒前
zzzzz完成签到 ,获得积分10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
我的南方完成签到,获得积分20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
wxyshare应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
哈密瓜发布了新的文献求助10
6秒前
李白发布了新的文献求助10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
优秀白曼发布了新的文献求助10
6秒前
fanghua完成签到,获得积分20
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074953
求助须知:如何正确求助?哪些是违规求助? 4294878
关于积分的说明 13382686
捐赠科研通 4116573
什么是DOI,文献DOI怎么找? 2254349
邀请新用户注册赠送积分活动 1258893
关于科研通互助平台的介绍 1191820