灯盏乙素
PI3K/AKT/mTOR通路
蛋白激酶B
细胞凋亡
信号转导
冲程(发动机)
信号通路
神经保护
化学
药理学
癌症研究
医学
神经科学
细胞生物学
生物
生物化学
工程类
机械工程
作者
Zhaoda Duan,Yingqi Peng,Dongyao Xu,Yu-Jia Yang,Yuke Wu,Chunyun Wu,Shan Yan,Li Yang
摘要
Among all stroke types, ischemic stroke (IS) occurs most frequently, resulting in neuronal death and tissue injury within both the central infarct region and surrounding areas. This study explored the neuroprotective mechanisms of scutellarin, a flavonoid compound, through an integrated strategy that merged in silico analyses (including network pharmacology and molecular docking simulations) with both in vitro and in vivo experimental verification. We identified 1887 IS-related targets and 129 scutellarin targets, with 23 overlapping targets. PPI network analysis revealed five core targets, and molecular docking demonstrated strong binding affinities between scutellarin and these targets. Bioinformatic analyses, including GO functional annotation and KEGG pathway mapping, indicated that the PI3K/AKT cascade represents the primary signaling mechanism. An in vitro experimental system was developed using PC12 cells under oxygen-glucose deprivation conditions to investigate how scutellarin regulates neuronal cell death via the PI3K/AKT pathway. Western blot quantification demonstrated that treatment with scutellarin enhanced the expression of p-PI3K, p-AKT, and Bcl-2 proteins, while simultaneously reducing levels of apoptotic markers Bax and cleaved caspase-3. Furthermore, pharmacological intervention with the selective PI3K inhibitor LY294002 attenuated these molecular alterations, resulting in diminished expression of p-PI3K, p-AKT, and Bcl-2, accompanied by elevated levels of Bax and cleaved caspase-3. In a rat model of middle cerebral artery occlusion, scutellarin administration demonstrated comparable neuroprotective effects, maintaining neuronal survival and modulating apoptotic protein expression via PI3K/AKT pathway activation. Collectively, this study demonstrates the therapeutic potential of scutellarin in cerebral ischemia through PI3K/AKT pathway modulation, suggesting its possible application in treating ischemic disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI