Characterization and Inverse Design of Stochastic Mechanical Metamaterials Using Neural Operators

超材料 可解释性 人工神经网络 反向 材料科学 计算机科学 非线性系统 人工智能 机器学习 机械工程 物理 工程类 数学 几何学 光电子学 量子力学
作者
Hanxun Jin,Boyu Zhang,Qianying Cao,Enrui Zhang,Aniruddha Bora,Sridhar Krishnaswamy,George Em Karniadakis,Horacio D. Espinosa
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202420063
摘要

Abstract Machine learning (ML) is emerging as a transformative tool for the design of mechanical metamaterials, offering properties that far surpass those achievable through lab‐based trial‐and‐error methods. However, a major challenge in current inverse design strategies is their reliance on extensive computational and/or experimental datasets, which becomes particularly problematic for designing micro‐scale stochastic architected materials that exhibit nonlinear mechanical behaviors. Here, a comprehensive end‐to‐end scientific ML framework, leveraging deep neural operators (including DeepONet and its variants) is introduced, to directly learn the relationship between the complete microstructure and mechanical response of architected metamaterials from sparse but high‐quality in situ experimental data. Various neural operators and standard neural networks are systematically compared to identify the model that offers better interpretability and accuracy. The approach facilitates the efficient inverse design of structures tailored to specific nonlinear mechanical behaviors. Results obtained from stochastic spinodal microstructures, printed using two‐photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 ‐ 10%. This work underscores that by employing neural operators with advanced nano‐ and micro‐mechanical experiments, the design of complex micro‐architected materials with desired properties becomes feasible, even in scenarios constrained by data scarcity. This work marks a significant advancement in the field of materials‐by‐design, potentially heralding a new era in the discovery and development of next‐generation metamaterials with unparalleled mechanical characteristics derived directly from experimental insights.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子发布了新的文献求助10
刚刚
星辰大海应助regina采纳,获得10
刚刚
li发布了新的文献求助10
刚刚
2秒前
CCVV发布了新的文献求助30
2秒前
BulingQAQ发布了新的文献求助10
2秒前
2秒前
4秒前
5秒前
5秒前
核桃应助Earl采纳,获得10
5秒前
笨笨芯发布了新的文献求助10
6秒前
小太阳发布了新的文献求助10
6秒前
阿冉发布了新的文献求助50
7秒前
7秒前
Zxxxx发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
12秒前
大方的白安完成签到,获得积分10
12秒前
英俊的铭应助Q17采纳,获得10
13秒前
yao发布了新的文献求助30
15秒前
烟花应助明天就毕业采纳,获得10
15秒前
Singularity应助jinjun采纳,获得10
15秒前
SciGPT应助Aynuyoah2024采纳,获得10
15秒前
zxe发布了新的文献求助10
16秒前
今后应助ZengJX采纳,获得10
17秒前
18秒前
19秒前
22秒前
Yolo发布了新的文献求助10
23秒前
24秒前
佳期如梦发布了新的文献求助10
25秒前
liangx完成签到 ,获得积分10
25秒前
regina发布了新的文献求助10
28秒前
28秒前
科研通AI5应助zxe采纳,获得10
29秒前
bai完成签到,获得积分10
32秒前
ai化学完成签到,获得积分10
33秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819299
求助须知:如何正确求助?哪些是违规求助? 3362381
关于积分的说明 10416801
捐赠科研通 3080563
什么是DOI,文献DOI怎么找? 1694605
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403