Deep phenotyping of heart failure with preserved ejection fraction through multi‐omics integration

心力衰竭 射血分数 医学 射血分数保留的心力衰竭 心脏病学 组学 分数(化学) 内科学 生物信息学 生物 有机化学 化学
作者
Jakob Versnjak,Titus Küehne,Pauline Fahjen,Nina Jovanović,Ulrike Löber,Gabriele G. Schiattarella,Nicola Wilck,Holger Gerhardt,Dominik N. Müller,Frank Edelmann,Philipp Mertins,Roland Eils,Michael Gotthardt,Sofia K. Forslund,Benjamin Wild,Marcus Kelm
出处
期刊:European Journal of Heart Failure [Wiley]
被引量:1
标识
DOI:10.1002/ejhf.70041
摘要

Aims Heart failure with preserved ejection fraction (HFpEF) has become the predominant form of heart failure and a leading cause of global cardiovascular morbidity and mortality. Due to its heterogeneous nature, HFpEF presents substantial challenges in diagnosis and management. Given the limited treatment options and lifestyle‐associated comorbidities, early identification is crucial for establishing effective preventive strategies. Here, we introduce and validate a machine learning‐based multi‐omics approach that integrates clinical and molecular data to detect and characterize HFpEF. Methods and results A supervised classifier was trained on a stratified subset of UK Biobank participants ( n = 401 917) to identify phenotypic profiles associated with subsequent symptom‐defined HFpEF during longitudinal follow‐up. Model performance was validated in a non‐overlapping hold‐out subset from all 22 UK Biobank assessment centres ( n = 100 446; 6726 HFpEF cases; 7394 with multi‐omics data). The classifier demonstrated robust discriminatory performance, with a receiver operating characteristic area under the curve (ROC AUC) of 0.931 (95% confidence interval [CI] 0.930–0.931), a sensitivity of 0.857 (95% CI 0.855–0.860) and a specificity of 0.847 (95% CI 0.846–0.847). It identified individuals who subsequently developed HFpEF an average of 6.3 ± 3.9 years before symptom onset in asymptomatic individuals. Similarity network fusion (SNF) identified distinct subgroups, including a high‐risk cluster characterized by elevated mortality and dysregulated inflammatory pathways, which was distinguishable with high accuracy (ROC AUC 0.988; 95% CI 0.985–0.990). Conclusions We identified HFpEF phenotypes at an early stage, often several years before the onset of clinical symptoms, when the disease trajectory may still be amenable to modification. The molecular characterization provides novel insights into the underlying disease complexity and enables more refined risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jackie完成签到,获得积分10
1秒前
xiaooooo完成签到,获得积分20
1秒前
小二郎应助《子非鱼》采纳,获得10
2秒前
李卓霖发布了新的文献求助10
3秒前
北北完成签到,获得积分20
3秒前
摩卡摩卡完成签到,获得积分10
4秒前
天天快乐应助聪慧雪糕采纳,获得10
4秒前
4秒前
zhuhuaipu完成签到,获得积分10
5秒前
姚佳麒完成签到,获得积分10
6秒前
王俊完成签到,获得积分10
7秒前
TT若曦完成签到,获得积分20
7秒前
8秒前
xiaooooo发布了新的文献求助10
8秒前
闵祥婷发布了新的文献求助10
8秒前
专注的问寒举报王亚娟求助涉嫌违规
9秒前
10秒前
CodeCraft应助证明采纳,获得10
10秒前
11秒前
本产品的一个用户完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
思源应助危险份子采纳,获得10
13秒前
星星发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
聪慧雪糕发布了新的文献求助10
15秒前
冷静烨霖发布了新的文献求助10
16秒前
粗暴的戒指完成签到,获得积分20
17秒前
lucky发布了新的文献求助10
17秒前
pluto应助府于杰采纳,获得10
18秒前
18秒前
19秒前
jiaweih发布了新的文献求助10
19秒前
上官若男应助大胆的映萱采纳,获得10
19秒前
眼睛大尔芙完成签到,获得积分20
20秒前
20秒前
wanci应助cyrong采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167