神经影像学
计算机科学
传感器融合
人工智能
数据建模
心理学
神经科学
数据库
作者
Chuang Liang,Rogers F. Silva,Tülay Adalı,Rongtao Jiang,Daoqiang Zhang,Shile Qi,Vince D. Calhoun
标识
DOI:10.1109/tip.2025.3597045
摘要
Multimodal fusion provides multiple benefits over single modality analysis by leveraging both shared and complementary information from different modalities. Notably, supervised fusion enjoys extensive interest for capturing multimodal co-varying patterns associated with clinical measures. A key challenge of brain data analysis is how to handle confounds, which, if unaddressed, can lead to an unrealistic description of the relationship between the brain and clinical measures. Current approaches often rely on linear regression to remove covariate effects prior to fusion, which may lead to information loss, rather than pursue the more global strategy of optimizing both fusion and covariates removal simultaneously. Thus, we propose "CR-mCCAR" to jointly optimize for confounds within a guided fusion model, capturing co-varying multimodal patterns associated with a specific clinical domain while also discounting covariate effects. Simulations show that CR-mCCAR separate the reference and covariate factors accurately. Functional and structural neuroimaging data fusion reveals co-varying patterns in attention deficit/hyperactivity disorder (ADHD, striato-thalamo-cortical and salience areas) and in autism spectrum disorder (ASD, salience and fronto-temporal areas) that link with core symptoms but uncorrelate with age and motion. These results replicate in an independent cohort. Downstream classification accuracy between ADHD/ASD and controls is markedly higher for CR-mCCAR compared to fusion and regression separately. CR-mCCAR can be extended to include multiple targets and multiple covariates. Overall, results demonstrate CR-mCCAR can jointly optimize for target components that correlate with the reference(s) while removing nuisance covariates. This approach can improve the meaningful detection of reliable phenotype-linked multimodal biomarkers for brain disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI