Confound Controlled Multimodal Neuroimaging Data Fusion and Its Application to Developmental Disorders

神经影像学 计算机科学 传感器融合 人工智能 数据建模 心理学 神经科学 数据库
作者
Chuang Liang,Rogers F. Silva,Tülay Adalı,Rongtao Jiang,Daoqiang Zhang,Shile Qi,Vince D. Calhoun
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 5271-5284
标识
DOI:10.1109/tip.2025.3597045
摘要

Multimodal fusion provides multiple benefits over single modality analysis by leveraging both shared and complementary information from different modalities. Notably, supervised fusion enjoys extensive interest for capturing multimodal co-varying patterns associated with clinical measures. A key challenge of brain data analysis is how to handle confounds, which, if unaddressed, can lead to an unrealistic description of the relationship between the brain and clinical measures. Current approaches often rely on linear regression to remove covariate effects prior to fusion, which may lead to information loss, rather than pursue the more global strategy of optimizing both fusion and covariates removal simultaneously. Thus, we propose "CR-mCCAR" to jointly optimize for confounds within a guided fusion model, capturing co-varying multimodal patterns associated with a specific clinical domain while also discounting covariate effects. Simulations show that CR-mCCAR separate the reference and covariate factors accurately. Functional and structural neuroimaging data fusion reveals co-varying patterns in attention deficit/hyperactivity disorder (ADHD, striato-thalamo-cortical and salience areas) and in autism spectrum disorder (ASD, salience and fronto-temporal areas) that link with core symptoms but uncorrelate with age and motion. These results replicate in an independent cohort. Downstream classification accuracy between ADHD/ASD and controls is markedly higher for CR-mCCAR compared to fusion and regression separately. CR-mCCAR can be extended to include multiple targets and multiple covariates. Overall, results demonstrate CR-mCCAR can jointly optimize for target components that correlate with the reference(s) while removing nuisance covariates. This approach can improve the meaningful detection of reliable phenotype-linked multimodal biomarkers for brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wowo发布了新的文献求助30
刚刚
FashionBoy应助不是山谷采纳,获得10
刚刚
十二完成签到,获得积分10
1秒前
1秒前
小卜同学完成签到,获得积分10
2秒前
zoe_zzz完成签到,获得积分10
2秒前
卡卡发布了新的文献求助10
3秒前
3秒前
JamesPei应助盛夏之末采纳,获得10
4秒前
冰冰完成签到 ,获得积分10
4秒前
科研通AI6应助念梦采纳,获得10
4秒前
思源应助琪琪采纳,获得10
4秒前
科研通AI6应助zmr123采纳,获得10
4秒前
4秒前
xiaofeidiao发布了新的文献求助10
7秒前
liuerlong发布了新的文献求助10
7秒前
7秒前
liiiiiii发布了新的文献求助10
8秒前
8秒前
lbuild完成签到,获得积分10
9秒前
9秒前
努力看文献的小杨完成签到,获得积分10
10秒前
英姑应助白鲜香精采纳,获得10
10秒前
缥缈的天奇完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
zpctx发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
Ya完成签到 ,获得积分10
13秒前
蒋j完成签到,获得积分10
13秒前
ww发布了新的文献求助10
14秒前
16秒前
Barry完成签到,获得积分10
16秒前
16秒前
坚定晓兰应助包容冰夏采纳,获得10
16秒前
17秒前
123完成签到,获得积分10
17秒前
万能图书馆应助勤劳薯条采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266