Model-based approach for two-stage group sequential or adaptive designs in bioequivalence studies using parallel and crossover designs

样本量测定 生物等效性 计算机科学 统计 数学 算法 药代动力学 医学 内科学
作者
Florence Loingeville,Manel Rakez,Thu Thuy Nguyen,Mark Donnelly,Lanyan Fang,Kevin Feng,Liang Zhao,Stella Grosser,Guoying Sun,Wanjie Sun,France Mentré,Julie Bertrand
出处
期刊:Statistical Methods in Medical Research [SAGE]
标识
DOI:10.1177/09622802251354925
摘要

In pharmacokinetic (PK) bioequivalence (BE) analysis, the recommended approach is the two one-sided tests (TOSTs) on non-compartmental analysis (NCA) estimates of area under the plasma drug concentration versus time curve and C m a x (NCA-TOST). Sample size estimation for a BE study requires assumptions on between/within subject variability (B/WSV). When little prior information is available, interim analysis using two-stage group sequential (GS) or adaptive designs (ADs) may be beneficial. GS fixes the second stage size, while AD requires sample re-estimation based on first-stage results. Recent research has proposed model-based (MB) TOST, using nonlinear mixed effects models, as an alternative to NCA-TOST. This work extends GS and AD approaches to MB-TOST. We evaluated these approaches on simulated parallel and two-way crossover designs for a one-compartment PK model, considering three variability levels for initial sample size calculation. We compared final sample size, type I error, and power estimates from one-stage, GS, and AD designs using NCA-TOST and MB-TOST. Results showed both NCA-TOST and MB-TOST reasonably controlled type I error while maintaining adequate power in two-stage GS and AD approaches, based on our limited computation power. Two-stage designs reduced sample size compared to traditional designs, especially for highly variable drugs, with many trials stopping at Stage 1 in AD designs. Our findings suggest MB-TOST may serve as a viable alternative to NCA-TOST for BE assessment in two-stage designs, especially when B/WSV impacts BE results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
Akim应助谭朵朵采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
Lucas应助帅气凝云采纳,获得10
1秒前
二马三乡发布了新的文献求助10
1秒前
杨杨应助科研通管家采纳,获得10
1秒前
太师发布了新的文献求助20
1秒前
1秒前
zbr完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
yuliuism应助科研通管家采纳,获得20
1秒前
哈哈哈应助科研通管家采纳,获得10
1秒前
小林完成签到,获得积分10
1秒前
1秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
HLS应助科研通管家采纳,获得10
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
Mr祥完成签到,获得积分10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
4秒前
4秒前
茴香包儿完成签到,获得积分10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
orixero应助疯狂的碧凡采纳,获得10
4秒前
小常不馋完成签到,获得积分10
4秒前
糊涂的桐应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851