Method for Classifying Apple Leaf Diseases Based on Dual Attention and Multi-Scale Feature Extraction

计算机科学 特征(语言学) 一般化 模式识别(心理学) 人工智能 对偶(语法数字) 特征提取 残差神经网络 比例(比率) 深度学习 数学 地理 地图学 艺术 数学分析 哲学 语言学 文学类
作者
Jie Ding,Cheng Zhang,Xi Cheng,Yi Yue,Guohua Fan,Yunzhi Wu,Youhua Zhang
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:13 (5): 940-940 被引量:7
标识
DOI:10.3390/agriculture13050940
摘要

Image datasets acquired from orchards are commonly characterized by intricate backgrounds and an imbalanced distribution of disease categories, resulting in suboptimal recognition outcomes when attempting to identify apple leaf diseases. In this regard, we propose a novel apple leaf disease recognition model, named RFCA ResNet, equipped with a dual attention mechanism and multi-scale feature extraction capacity, to more effectively tackle these issues. The dual attention mechanism incorporated into RFCA ResNet is a potent tool for mitigating the detrimental effects of complex backdrops on recognition outcomes. Additionally, by utilizing the class balance technique in conjunction with focal loss, the adverse effects of an unbalanced dataset on classification accuracy can be effectively minimized. The RFB module enables us to expand the receptive field and achieve multi-scale feature extraction, both of which are critical for the superior performance of RFCA ResNet. Experimental results demonstrate that RFCA ResNet significantly outperforms the standard CNN network model, exhibiting marked improvements of 89.61%, 56.66%, 72.76%, and 58.77% in terms of accuracy rate, precision rate, recall rate, and F1 score, respectively. It is better than other approaches, performs well in generalization, and has some theoretical relevance and practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神马都不懂完成签到,获得积分10
刚刚
善学以致用应助DY采纳,获得10
刚刚
系小小鱼啊完成签到,获得积分10
1秒前
1秒前
fangliu发布了新的文献求助10
1秒前
1秒前
沉默的凡梦完成签到 ,获得积分10
1秒前
榕俊完成签到,获得积分10
2秒前
Ann完成签到,获得积分10
2秒前
浮生完成签到,获得积分10
3秒前
Lora完成签到,获得积分10
3秒前
4秒前
wch完成签到,获得积分20
4秒前
4秒前
科目三应助小橙子采纳,获得10
5秒前
春迟完成签到,获得积分10
5秒前
5秒前
蜗壳发布了新的文献求助10
5秒前
6秒前
彭于晏应助green采纳,获得10
7秒前
清风完成签到,获得积分10
7秒前
8秒前
勤奋的绪完成签到,获得积分10
9秒前
Aspirin完成签到,获得积分10
9秒前
9秒前
东方雨季完成签到,获得积分10
9秒前
KongHN完成签到,获得积分10
9秒前
冷静的小虾米完成签到 ,获得积分10
9秒前
HXY完成签到 ,获得积分10
10秒前
10秒前
Luyu发布了新的文献求助10
10秒前
付2完成签到,获得积分10
11秒前
FF发布了新的文献求助10
11秒前
fangliu完成签到,获得积分10
11秒前
Aspirin发布了新的文献求助10
11秒前
123123完成签到,获得积分10
12秒前
未来可期应助年轻半雪采纳,获得10
12秒前
13秒前
张瑜发布了新的文献求助10
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049290
求助须知:如何正确求助?哪些是违规求助? 3587151
关于积分的说明 11398785
捐赠科研通 3313743
什么是DOI,文献DOI怎么找? 1822987
邀请新用户注册赠送积分活动 894874
科研通“疑难数据库(出版商)”最低求助积分说明 816570