Modeling of capacitance for carbon-based supercapacitors using Super Learner algorithm

电容 超级电容器 材料科学 碳纤维 微型多孔材料 电容器 电极 分析化学(期刊) 电压 化学 电气工程 复合材料 工程类 色谱法 物理化学 复合数
作者
Jafar Abdi,Tahereh Pirhoushyaran,Fahimeh Hadavimoghaddam,Seyed Ali Madani,Abdolhossein Hemmati‐Sarapardeh,Seyyed Hamid Esmaeili-Faraj
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:66: 107376-107376 被引量:8
标识
DOI:10.1016/j.est.2023.107376
摘要

Due to some specifications such as high capacitance and power density, electrostatic double-layer capacitors (EDLCs) are more noticeable than other supercapacitors. Some physical and chemical properties, surface functional groups, and testing conditions affect the efficiency and in particular the capacitance of EDLCs with carbon-based electrodes. In this study, four machine learning models, including Super Learner (SL), Extremely Randomized Trees (Extra trees), Extreme learning machine (ELM), and Multivariate adaptive regression splines (MARS) were implemented to predict the EDLCs' capacitance based on different impressive properties. A large dataset was assigned to the 121 different carbonaceous electrodes collected under various conditions, including 13 physical and chemical properties: voltage window (V), specific surface area (SSA) and SSA of micropore, pore volume (PV), and micropore volume, the ratio of D-band and G-band (Id/Ig) and doping elements (inputs parameters). The results indicated that the SL model with the R2 values of 0.9781, 0.9717, and 0.9768 for training, testing, and total dataset, respectively, and the RSME value of 18.099 was the most accurate model in comparison with the others. Indeed, the sensitivity analysis results exhibited that SSA with the relevance factor of 0.323 is the most important feature in the capacitance of carbon-based electrodes, while the presence of boron, sulfur, fluorine, phosphorus doping elements and pore size can be ignored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈晓迪1992发布了新的文献求助10
1秒前
22222完成签到,获得积分10
2秒前
CIOOICO1发布了新的文献求助10
2秒前
2秒前
2秒前
从容沉鱼完成签到,获得积分20
2秒前
ZHZ发布了新的文献求助10
4秒前
华仔应助action采纳,获得10
4秒前
星辰大海应助直率的乐萱采纳,获得10
4秒前
5秒前
5秒前
Lucas应助于胜男采纳,获得10
5秒前
5秒前
6秒前
6秒前
孟丽敏发布了新的文献求助10
8秒前
9秒前
万能图书馆应助haitun采纳,获得10
9秒前
上官若男应助黑色幽默采纳,获得10
9秒前
wanayu发布了新的文献求助10
10秒前
哩哩李完成签到,获得积分10
10秒前
笑点低千雁完成签到,获得积分10
11秒前
SciGPT应助ming采纳,获得80
11秒前
花开四海发布了新的文献求助10
11秒前
义气的惜海完成签到,获得积分10
11秒前
Yr发布了新的文献求助10
11秒前
11秒前
qcf发布了新的文献求助10
12秒前
12秒前
哈哈哈哈酷酷酷完成签到,获得积分20
12秒前
12秒前
风趣的奇异果完成签到 ,获得积分10
13秒前
学术垃圾发布了新的文献求助10
13秒前
孟丽敏完成签到,获得积分20
13秒前
14秒前
紧张的友灵完成签到,获得积分10
14秒前
15秒前
15秒前
吃不胖的完成签到,获得积分10
15秒前
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034