Task offloading paradigm in mobile edge computing-current issues, adopted approaches, and future directions

计算机科学 云计算 移动云计算 瓶颈 移动边缘计算 边缘计算 分布式计算 工作量 移动设备 计算卸载 互联网 GSM演进的增强数据速率 计算机网络 电信 嵌入式系统 万维网 操作系统
作者
Mohammad Yahya Akhlaqi,Zurina Mohd Hanapi
出处
期刊:Journal of Network and Computer Applications [Elsevier BV]
卷期号:212: 103568-103568 被引量:72
标识
DOI:10.1016/j.jnca.2022.103568
摘要

Many enterprise companies migrate their services and applications to the cloud to benefit from cloud computing advantages. Meanwhile, the rapidly increasing number of connected devices with the massive amount of generated data that use cloud services leads to high workload, congestion, and delay bottleneck in the centralized cloud architecture. Consequently, Mobile Edge Computing (MEC) is introduced as a new paradigm to expand cloud capabilities near the end devices. In addition, new technologies such as the Internet of Things (IoT), Autonomous Vehicles (AV), 5G, and Augmented Reality (AR) bring new demands and opportunities that MEC can make possible. Offloading delay-sensitive and computationally intensive tasks to nearby MEC nodes is an effective way that still is the most common open problem in MEC. The offloading problem in MEC has been widely studied in areas such as Vehicular Edge Computing (VEC), IoT, Radio Access Networks (RAN), and 5G but independently. Due to the high diversity of research areas, targeted issues, and adopted algorithms and techniques, finding the right research path in task offloading is highly demanding. To fill this gap, a comprehensive survey is conducted using the mixed-method systematic literature review involving qualitative and quantitative data from the studied papers. For each journal paper, the detailed information of the work area, targeted issue, formulation technique, optimization approach, adopted algorithms, evaluation techniques, performance matrices, dataset, utilized tools, and framework are extracted and analyzed using manual and automatic coding. Major offloading-related issues in MEC are investigated, and the taxonomy of journal papers based on adopted approaches is presented. For further future exploration, we suggest the potential areas of research, the contribution of the algorithms and technique, and the research direction in MEC. This review will give a quick and overall view of MEC's latest issues and solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳凝丹完成签到,获得积分10
刚刚
丘比特应助亓大大采纳,获得10
刚刚
1秒前
1秒前
1秒前
健身哥发布了新的文献求助10
1秒前
tree完成签到,获得积分10
2秒前
木子李完成签到,获得积分20
3秒前
Akim应助hongdongxiang采纳,获得10
3秒前
3秒前
养不熟的野猫完成签到,获得积分10
3秒前
爆米花应助羊羽采纳,获得10
4秒前
不用养就乐多完成签到 ,获得积分10
4秒前
wanci应助失眠小熊猫采纳,获得10
4秒前
科研人才发布了新的文献求助10
4秒前
悦耳小霜发布了新的文献求助10
4秒前
情怀应助CY采纳,获得10
4秒前
5秒前
Fanny_825完成签到,获得积分10
5秒前
6秒前
7秒前
顾矜应助三千月色么么哒采纳,获得10
7秒前
鼓励男孩发布了新的文献求助10
8秒前
TT完成签到,获得积分10
9秒前
科研通AI5应助健身哥采纳,获得10
9秒前
机灵的囧完成签到,获得积分10
9秒前
9秒前
10秒前
zhonglv7应助阿龙采纳,获得10
10秒前
11秒前
搜集达人应助四维小透明采纳,获得10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
14秒前
happiness完成签到 ,获得积分10
14秒前
15秒前
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
探索化学的奥秘:电子结构方法 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4179174
求助须知:如何正确求助?哪些是违规求助? 3714551
关于积分的说明 11710629
捐赠科研通 3395555
什么是DOI,文献DOI怎么找? 1862903
邀请新用户注册赠送积分活动 921504
科研通“疑难数据库(出版商)”最低求助积分说明 833299