摘要
Abstract This Perspective analyses the perfluoroalkylation reactions by electron donor‐acceptor (EDA) complexes since 2018, while summarizes, in Tables , the vast majority of representative perfluoroalkylation reactions of various classes of organic compounds by EDA complexes and halogen‐bonding interactions. Numerous intriguing reaction methodologies and valuable synthetic instances have emerged. We aim to delve into these new examples comprehensively, while also contemplating the future directions in the field. Subsequent sections will elaborate on the perfluoroalkylation of (hetero)aromatic compounds, carbon‐carbon multiple bonds, perfluoroalkylation of carbonyl compounds, and perfluoroalkylation of isocyanides, covering their synthetic scope and mechanistic insights. Perfluoroalkylation reactions of (hetero)aromatic compounds by EDA complexes. Entry Substrate Complex Reaction conditions Product Ref. 1 [13] 2 [46] 3 R F I (3 equiv.) KOH (1.5 equiv.) Blue LEDs H 2 O, Ar, 20 h [47] 4 TEEDA (3 equiv.) CFL (25 W) THF, r.t. R F− I (3 equiv.) [48] 5 ICF 2 CO 2 Et (1.3 equiv.) Na 2 CO 3 (1.5 equiv.) DMSO (3 mL) Ar, rt. 427 nm LED, 16 h [49] 6 TMG (2.5 equiv.) R F− I (2.5 equiv.) 23 W CFL, MeCN/Hex f (5 : 1) [42,50] 7 TMG (2.5 equiv.) R F− I (2.5 equiv.) 23 W CFL, MeCN [51] 8 Umemoto's reagent (2 equiv.) N ‐methylmorpholine (2.5 equiv.) DMF, r.t. [52] 9 Cs 2 CO 3 (2 equiv.) R F− I (3 equiv.) white light H 2 O (3 equiv.) DMF, r.t., 2 h [53] 10 4.5 W 450 nm laser CaCl 2 , MeNO 2 , 0 °C [3] 11 R F− I (1.5 equiv.) t ‐BuONa (2 equiv.) DMF Green LEDs [54] 12 or EDA complex I−R f (2.1 equiv.) TMEDA (2 equiv.) or DBU (2 equiv.) Blue LEDs 24 W [55,56] 13 TFE/water (1 : 1) (0.2 M) CF 3 SO 2 Na Blue LEDs r.t., 12 h [84] Perfluoroalkylation reactions of carbon‐carbon multiple bonds and constrained cyclic compounds by EDA complexes. Entry Substrate Complex Reaction conditions Product Ref. 1 Bu 4 NCl, Hg lamp (6 W) R F− I (1.2 equiv.) CH 3 OH, 1.5 h r.t, Ar [39] 2 R F I (3 equiv.) KOH (1.5 equiv.) Blue LEDs H 2 O, Ar, 20 h [47] 3 [57] 4 DIPEA or TMEDA or DBU or TEEDA …….. CF 3 I CF 3 −I (3 equiv.) Base (2 equiv.) MeCN or DMF or THF CFL, 25 W with DIPEA, TMEDA or TEEDA; with DBU [48,58,59] 5 Bn 2 NH MeCN R F −I Blue LED, r.t. [60] 6 Base, Blue LEDs DMF or THF [61] 7 I−R F H 2 O/toluene=9 : 1 Blue LEDs, 65 °C, 12 h [41] 8 K 3 PO 4 (3 equiv.) R F− I (3 equiv.) CuCl (10 mol%) TMSNCS (3 equiv.) CH 3 CN (2 mL) Violet LEDs (24 W) Ar, 4 h [37] 9 R F− I (3 equiv.) Diphenylacetaldehyde (10 mol%) Pyrrolidine (40 mol%) DIPEA (2 equiv.) DCE (2.5 mL); O 2 (0.8 eq.); Ar White LEDs (2.5 W); 24 h [44,62] 10 DIPEA,DMA Ar (trace air) Blue LEDs, rt. 36–72 h [63] 11 TMEDA Blue LEDs n ‐C 4 F 9 I DMSO air, 24 h RT [64] 12 K 3 PO 4 (2 equiv.) DABCO (1.2 equiv.) h υ (400 Watt) 50 °C C n F 2n+1 I (1.8 equiv.) [65–67] 13 Blue LEDs DCE, r.t. [27] 14 2,4,6‐trimethylpyridine MeCN, 60 °C Togni's reagent [68] 15 PMDETA (2 equiv.) DMSO (2 mL) N 2 , Blue LEDs [69] 16 Blue LEDs [70,71] 17 MeCN (0.2 M) with less than 1 % water CF 3 SO 2 Na (1 mmol) Blue LEDs [84] Perfluoroalkylation of carbonyl compounds, isocyanides and hydrazones. Entry Substrate Complex Reaction conditions Product Ref. 1 [72,73] 2 R F− I (0.2 mmol) cis ‐catalyst M (20 mol%) 2,6‐lutidine (1.2 equiv.) Blue LEDs, Et 2 O (0.7 M) ‐10 °C, 20 h [74] 3 white light R F −I [75] 4 phase transfer catalyst Cs 2 CO 3 , C 6 H 5 Cl/8F 18 (2 : 1), 25 °C, R F −I [32] 5 ambient light C 4 F 9 −I NaOH (4.1 equiv.) MeCN, R.T. [76] 6 R F I (3 equiv.) KOH (1.5 equiv.) Blue LEDs THF, Ar, 36 h [47] 7 R F− I (2 equiv.) TMEDA (2 equiv.) THF (2 mL) Blue LEDs (25 W) 30 °C, N 2 [77] 8 TEEDA (1.5 equiv.) CFL (25 W) THF I−C 4 F 9 [48] 9 Bn 2 NH Blue LEDs MeCN, RT R F −I [78] 10 TMG (1.5 equiv.) ambient light MeCN, RT I−R F [79] 11 Imidazole (3 equiv.) MeCN, R F− I (2 equiv.) r.t. [80]