清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

End-to-End Autonomous Driving without Costly Modularization and 3D Manual Annotation

模块化程序设计 注释 端到端原则 计算机科学 人工智能 程序设计语言
作者
Mingzhe Guo,Zhipeng Zhang,He Yuan,Ke Wang,Liping Jing
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.17680
摘要

We propose UAD, a method for vision-based end-to-end autonomous driving (E2EAD), achieving the best open-loop evaluation performance in nuScenes, meanwhile showing robust closed-loop driving quality in CARLA. Our motivation stems from the observation that current E2EAD models still mimic the modular architecture in typical driving stacks, with carefully designed supervised perception and prediction subtasks to provide environment information for oriented planning. Although achieving groundbreaking progress, such design has certain drawbacks: 1) preceding subtasks require massive high-quality 3D annotations as supervision, posing a significant impediment to scaling the training data; 2) each submodule entails substantial computation overhead in both training and inference. To this end, we propose UAD, an E2EAD framework with an unsupervised proxy to address all these issues. Firstly, we design a novel Angular Perception Pretext to eliminate the annotation requirement. The pretext models the driving scene by predicting the angular-wise spatial objectness and temporal dynamics, without manual annotation. Secondly, a self-supervised training strategy, which learns the consistency of the predicted trajectories under different augment views, is proposed to enhance the planning robustness in steering scenarios. Our UAD achieves 38.7% relative improvements over UniAD on the average collision rate in nuScenes and surpasses VAD for 41.32 points on the driving score in CARLA's Town05 Long benchmark. Moreover, the proposed method only consumes 44.3% training resources of UniAD and runs 3.4 times faster in inference. Our innovative design not only for the first time demonstrates unarguable performance advantages over supervised counterparts, but also enjoys unprecedented efficiency in data, training, and inference. Code and models will be released at https://github.com/KargoBot_Research/UAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医路无悔发布了新的文献求助20
1秒前
2秒前
racill完成签到 ,获得积分10
5秒前
辛普森发布了新的文献求助10
6秒前
辛普森完成签到,获得积分10
13秒前
木又完成签到 ,获得积分10
15秒前
时尚的冰棍儿完成签到 ,获得积分10
16秒前
Damon完成签到 ,获得积分10
27秒前
北笙完成签到 ,获得积分10
27秒前
白嫖论文完成签到 ,获得积分10
30秒前
vitamin完成签到 ,获得积分10
31秒前
刻苦的新烟完成签到 ,获得积分10
33秒前
37秒前
云木完成签到 ,获得积分10
38秒前
科研小白发布了新的文献求助10
40秒前
SH123完成签到 ,获得积分10
44秒前
ZH完成签到,获得积分10
45秒前
搜集达人应助科研小白采纳,获得10
49秒前
传奇3应助科研小白采纳,获得10
49秒前
聪慧芷巧发布了新的文献求助10
1分钟前
HMR完成签到 ,获得积分10
1分钟前
jitianxing完成签到,获得积分10
1分钟前
zhilianghui0807完成签到 ,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
火焰不聪明完成签到 ,获得积分10
1分钟前
畅快代柔完成签到 ,获得积分10
1分钟前
明亮豆芽完成签到 ,获得积分10
1分钟前
jitianxing发布了新的文献求助10
1分钟前
南风完成签到 ,获得积分10
1分钟前
CipherSage应助聪慧芷巧采纳,获得10
1分钟前
nano_yan完成签到,获得积分10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
澄子完成签到 ,获得积分10
1分钟前
1分钟前
Microgan完成签到,获得积分10
2分钟前
先锋完成签到 ,获得积分10
2分钟前
xiaofeixia完成签到 ,获得积分10
2分钟前
火星上小土豆完成签到 ,获得积分10
2分钟前
番茄小超人2号完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300956
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626