Glutaryl-CoA dehydrogenase suppresses tumor progression and shapes an anti-tumor microenvironment in hepatocellular carcinoma

肝细胞癌 癌症研究 肿瘤微环境 肿瘤进展 医学 肿瘤科 内科学 病理 生物 肿瘤细胞 癌症
作者
Yuanxiang Lao,Xiaohan Cui,Zhu Xu,Hongyao Yan,Zechuan Zhang,Zhenwei Zhang,Longpo Geng,Binghua Li,Yijun Lu,Qifei Guan,Xiaohong Pu,Suwen Zhao,Jiapeng Zhu,Xihu Qin,Beicheng Sun
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:81 (5): 847-861 被引量:40
标识
DOI:10.1016/j.jhep.2024.05.034
摘要

•Proteomics data and clinical validation link GCDH to HCC suppression •GCDH depletion promotes HCC initiation, development and metastasis •GCDH suppresses PPP and glycolysis via crotonylation of PGD, TKT and ALDOC, which further induces cell senescence •GCDH-driven HCC senescence shapes an anti-tumor microenvironment Background & Aims Crotonylation, a crotonyl-CoA-based non-enzymatic protein translational modification, affects diverse biological processes, such as spermatogenesis, tissue injury, inflammation, and neuropsychiatric diseases. Crotonylation shows decreased in hepatocellular carcinomas (HCCs), but the mechanism remains unknown. In this study, we aim to describe the role of glutaryl-CoA dehydrogenase (GCDH) in tumor suppression. Methods Three cohorts containing 40, 248 and 17 pairs of samples were used to evaluate the link between GCDH expression levels and the HCC clinical characteristics as well as anti-PD-1 response. Subcutaneous xenograft, orthotopic xenograft, Trp53Δhep/Δhep; MYC- as well as Ctnnboe; METoe- driven mouse models were adopted to validate GCDH effects on HCC suppression. Results GCDH depletion promoted HCC growth and metastasis, whereas its overexpression reversed these processes. As GCDH converts glutaryl-CoA to crotonyl-CoA to increase crotonylation levels, we performed lysine crotonylome analysis and identified the pentose phosphate pathway (PPP) and glycolysis-related proteins PGD, TKT, and ALDOC as GCDH-induced crotonylation targets. Crotonyl-bound targets showed allosteric effects that controlled their enzymatic activities, leading to decreases in ribose 5-phosphate and lactate production, further limiting the Warburg effect. PPP blockade also stimulated peroxidation, synergizing with senescent modulators to induce senescence in GCDHhigh cells. These cells induced the infiltration of immune cells by the senescence-associated secretory cell phenotype (SASP) to shape an anti-tumor immune microenvironment. Meanwhile, the GCDHlow population was sensitized to anti-programmed cell death protein 1 (PD-1) therapy. Conclusion GCDH inhibits HCC progression via crotonylation-induced suppression of the PPP and glycolysis, resulting in HCC cell senescence. The senescent cell further shapes an anti-tumor microenvironment by SASP. The GCDHlow population is vulnerable to anti-PD-1 therapy because more PD-1+CD8+ T cells are exhibited in GCDHlow population. Impact and implications GCDH is a favorable prognostic indicator in liver, lung, and renal cancers. In addition, most of GCDH depletion-induced toxic metabolites originate from the liver, accumulate locally, and cannot cross the blood-brain barrier. Therefore, studies on the correlation between GCDH and liver cancer would contribute to discovering the initiation and progression of hepatocellular carcinoma, of which over 70% of patients occupied >2-fold GCDH downregulation. Given that the GCDHlow and GCDHhigh HCC population can be distinguished based on serum glucose and ammonia levels, it will be worthwhile to evaluate the curative effects of pro-senescent and immune-therapeutic strategies based on the expression levels of GCDH. Crotonylation, a crotonyl-CoA-based non-enzymatic protein translational modification, affects diverse biological processes, such as spermatogenesis, tissue injury, inflammation, and neuropsychiatric diseases. Crotonylation shows decreased in hepatocellular carcinomas (HCCs), but the mechanism remains unknown. In this study, we aim to describe the role of glutaryl-CoA dehydrogenase (GCDH) in tumor suppression. Three cohorts containing 40, 248 and 17 pairs of samples were used to evaluate the link between GCDH expression levels and the HCC clinical characteristics as well as anti-PD-1 response. Subcutaneous xenograft, orthotopic xenograft, Trp53Δhep/Δhep; MYC- as well as Ctnnboe; METoe- driven mouse models were adopted to validate GCDH effects on HCC suppression. GCDH depletion promoted HCC growth and metastasis, whereas its overexpression reversed these processes. As GCDH converts glutaryl-CoA to crotonyl-CoA to increase crotonylation levels, we performed lysine crotonylome analysis and identified the pentose phosphate pathway (PPP) and glycolysis-related proteins PGD, TKT, and ALDOC as GCDH-induced crotonylation targets. Crotonyl-bound targets showed allosteric effects that controlled their enzymatic activities, leading to decreases in ribose 5-phosphate and lactate production, further limiting the Warburg effect. PPP blockade also stimulated peroxidation, synergizing with senescent modulators to induce senescence in GCDHhigh cells. These cells induced the infiltration of immune cells by the senescence-associated secretory cell phenotype (SASP) to shape an anti-tumor immune microenvironment. Meanwhile, the GCDHlow population was sensitized to anti-programmed cell death protein 1 (PD-1) therapy. GCDH inhibits HCC progression via crotonylation-induced suppression of the PPP and glycolysis, resulting in HCC cell senescence. The senescent cell further shapes an anti-tumor microenvironment by SASP. The GCDHlow population is vulnerable to anti-PD-1 therapy because more PD-1+CD8+ T cells are exhibited in GCDHlow population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lovt123发布了新的文献求助10
刚刚
orixero应助黄浩采纳,获得10
刚刚
wanci应助古猫宁采纳,获得10
1秒前
1秒前
凌涛完成签到,获得积分10
2秒前
CipherSage应助做好胶水采纳,获得10
2秒前
香菜超人发布了新的文献求助10
2秒前
zjh关闭了zjh文献求助
3秒前
3秒前
agrlook发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
ZYC007完成签到,获得积分10
7秒前
赘婿应助哈哈哈哈采纳,获得10
9秒前
9秒前
10秒前
曲奇完成签到,获得积分10
11秒前
皮皮发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
静寂焉完成签到,获得积分10
13秒前
顾矜应助dungaway采纳,获得10
14秒前
做好胶水发布了新的文献求助10
14秒前
Lucas应助ikun采纳,获得10
15秒前
17秒前
18秒前
18秒前
烟花应助哈哈哈哈采纳,获得10
18秒前
李奚发布了新的文献求助10
19秒前
CodeCraft应助去月球数星星采纳,获得10
19秒前
心灵美的傲松完成签到,获得积分10
20秒前
zyy应助smh采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
lovekobe完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542539
求助须知:如何正确求助?哪些是违规求助? 4628834
关于积分的说明 14609866
捐赠科研通 4569918
什么是DOI,文献DOI怎么找? 2505492
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454215