JGULF: Joint global and unilateral local feature network for micro-expression recognition

接头(建筑物) 特征(语言学) 模式识别(心理学) 表达式(计算机科学) 人工智能 计算机科学 面部表情识别 计算机视觉 面部识别系统 工程类 建筑工程 哲学 语言学 程序设计语言
作者
Fengping Wang,Jie Li,Chun Qi,Lin Wang,Pan Wang
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:147: 105091-105091 被引量:1
标识
DOI:10.1016/j.imavis.2024.105091
摘要

Micro-expression is a subtle facial movement that is fleeting and manifest in localized areas, making it difficult for the human eye to detect and recognize it. Although algorithms that extract facial features from specific regions or the entire face have shown potential, the classification of micro-expressions using features from symmetrical left and right regions can be challenging in the presence of unilateral movements. This can ultimately affect the performance of micro-expression recognition. To address this issue, we propose a network called Joint Global and Unilateral Local Features (JGULF) for micro-expression recognition. Initially, we employ a Convolutional Neural Network (CNN) and an adjusted Vision Transformer (ViT) model to extract global features from micro-expressions. The local feature extraction module is designed based on global features. The facial features are divided into multiple local regions with varying scales. After that, local feature learning and selection are performed to filter out unilateral local features related to micro-expression movements efficiently. Finally, global and local features are combined to classify micro-expressions. Through comprehensive experimental validation, our algorithm achieves state-of-the-art classification performance on the SMIC, CASMEII, and SAMM micro-expression datasets, demonstrating the effectiveness of combining global features and selecting local features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若水完成签到 ,获得积分10
刚刚
华仔应助慈祥的绮采纳,获得10
1秒前
纯情的山河完成签到,获得积分10
2秒前
kytwenxian完成签到,获得积分0
3秒前
西乡塘塘主完成签到,获得积分10
3秒前
闪闪完成签到 ,获得积分10
5秒前
电催化CYY完成签到,获得积分10
6秒前
小红书求接接接接一篇完成签到,获得积分20
6秒前
8秒前
mmz完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
小橙子完成签到,获得积分10
10秒前
11秒前
Ryan完成签到,获得积分20
11秒前
正值清白之年完成签到,获得积分10
12秒前
xd发布了新的文献求助10
12秒前
13秒前
悦耳静枫发布了新的文献求助30
14秒前
Jasper应助kkkl采纳,获得10
14秒前
14秒前
科目三应助闻闻采纳,获得10
15秒前
Qovn完成签到,获得积分10
15秒前
netrandwalk完成签到,获得积分10
16秒前
tian完成签到 ,获得积分10
16秒前
Ryan发布了新的文献求助10
17秒前
18秒前
18秒前
streetpants发布了新的文献求助10
19秒前
科研通AI5应助麦子采纳,获得10
20秒前
陈嘻嘻完成签到 ,获得积分10
21秒前
22秒前
22秒前
wanci应助花誓lydia采纳,获得10
23秒前
23秒前
Lee发布了新的文献求助50
24秒前
ABCDEFG发布了新的文献求助30
25秒前
受伤问凝完成签到 ,获得积分10
26秒前
怡然的乘风完成签到 ,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742