Incremental Classification for Myoelectric Manifold Representation With Matrix-Formed Growing Neural Gas Network

手势 人工神经网络 手势识别 代表(政治) 计算机科学 歧管(流体力学) 模式识别(心理学) 人工智能 语音识别 工程类 机械工程 政治 政治学 法学
作者
Qichuan Ding,Peng Yin,Jinshuo Ai,Shuai Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (8): 10065-10073 被引量:2
标识
DOI:10.1109/tii.2024.3393004
摘要

Current surface electromyography (sEMG)-based gesture recognition only extracts time or frequency features from raw sEMG signals, and then puts the features together to generate sample vectors, which are further used as inputs to build fixed classification models. This way may bring out two issues. First, raw sEMG signals are often acquired from multichannel electrodes. Only extracting time or frequency features will lose the spatial topology information between different channels, and cannot reflect the movement synergy of different muscles, causing relatively low recognition accuracies. Second, fixed classifiers only recognize fixed gestures, and cannot handle dynamically increasing gestures, limiting the scalabilities of classifiers in applications. To this end, we introduce a myoelectric manifold representation based on the symmetric positive definite (SPD) matrix to express the spatial synergy of multiple muscles. Then, the growing neural gas network is extended to the SPD manifold space, and uses myoelectric matrices as inputs to realize the incremental gesture recognition, maintaining the space topology with very few prototypes. Extensive experiments were conducted on two public databases (Ninapro DB2 and DB5) and a self-collection database. Experimental results showed that our method was superior to current methods, increasing recognition accuracy by 1.63%–11.89%, and can continuously grow its recognition ability online, revealing the potential in implementing myoelectric interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
难过亦丝完成签到,获得积分10
1秒前
顺心浩阑完成签到,获得积分10
1秒前
科研通AI5应助DDD42采纳,获得10
3秒前
illusion2019应助平常的无极采纳,获得20
3秒前
来可追发布了新的文献求助10
4秒前
难过亦丝发布了新的文献求助10
4秒前
zzy发布了新的文献求助10
4秒前
5秒前
歆煜完成签到,获得积分20
11秒前
领导范儿应助背后梦安采纳,获得10
11秒前
平常的无极完成签到,获得积分20
12秒前
12秒前
叉叉完成签到,获得积分10
13秒前
搜集达人应助好名字采纳,获得10
13秒前
Hevesy完成签到,获得积分10
13秒前
轻松的天真完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
zhanzhanzhan发布了新的文献求助10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
11哥应助科研通管家采纳,获得10
18秒前
星辰大海应助成功采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
李健应助风中的西装采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得20
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
无花果应助孙扬采纳,获得10
19秒前
20秒前
20秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791491
求助须知:如何正确求助?哪些是违规求助? 3335911
关于积分的说明 10277959
捐赠科研通 3052606
什么是DOI,文献DOI怎么找? 1675161
邀请新用户注册赠送积分活动 803188
科研通“疑难数据库(出版商)”最低求助积分说明 761111