RPH-Counter: Field detection and counting of rice planthoppers using a fully convolutional network with object-level supervision

领域(数学) 对象(语法) 计算机科学 水田 人工智能 统计 数学 计算机视觉 地理 考古 纯数学
作者
Zhiliang Zhang,Wei Zhan,Kanglin Sun,Yu Zhang,Yuheng Guo,Zhangzhang He,Dengke Hua,Yong Sun,Xiongwei Zhang,shanshan tong,Lianyou Gui
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:225: 109242-109242
标识
DOI:10.1016/j.compag.2024.109242
摘要

Rice planthoppers are among the most severe migratory pests affecting rice, characterized by small size and rapid reproduction, leading to sudden and explosive outbreaks. Therefore, timely and accurate monitoring of rice planthopper populations is crucial. Applying machine vision to field monitoring of rice planthoppers can reduce labor and material costs. Existing literature lacks research on field detection and counting of rice planthoppers, and general detection and counting methods suffer from performance degradation in complex environments. In this study, we propose the Rice Planthopper Counter (RPH-Counter), a novel detection and counting architecture. The model is a simple Fully Convolutional Network (FCN). Initially, we propose the Object Counting loss (OC loss), which includes four sub-loss functions that compel the FCN to learn each object's center and boundary positions while constraining false positives. After training, the FCN can predict a separate spot for each rice planthopper, achieving precise localization and counting of the pests. Then, we propose the Self-Attention Feature Pyramid Network (SAFPN) by adding additional Spatial Self-Attention (SSA) modules at the lateral connections of C3 to C5, enhancing the model's performance in complex environments at a lower computational cost. We collected a large-scale field rice planthopper dataset, containing approximately 140,000 annotated rice planthoppers. The evaluation metrics are localization accuracy and counting error. Experimental results show that the RPH-Counter, with lower computational complexity, significantly improves performance, achieving an F1 score of 92.36%, a Mean Absolute Error (MAE) of only 2.40, and an R-squared (R2) of 0.985. Compared to the state-of-the-art object detectors, the F1 score improved by 8.62%, and the counting error decreased by 61%. Compared to the state-of-the-art density estimation methods, the counting error decreased by 23%, with precise localization ability and multi-class expandability. This method offers a new research approach and promising direction for field pest counting and pest population monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅方盒完成签到,获得积分10
1秒前
dong发布了新的文献求助10
2秒前
2秒前
科研通AI5应助Pepsi采纳,获得10
2秒前
孜然西瓜发布了新的文献求助10
4秒前
机灵乐驹完成签到,获得积分10
4秒前
glitter完成签到,获得积分20
4秒前
why发布了新的文献求助10
5秒前
郝晨晰发布了新的文献求助10
5秒前
zmmm发布了新的文献求助10
5秒前
5秒前
pengchen完成签到 ,获得积分10
6秒前
6秒前
8秒前
打打应助认真初之采纳,获得10
8秒前
莫西莫西完成签到,获得积分10
8秒前
共享精神应助Anastasia采纳,获得10
8秒前
8秒前
9秒前
猪猪侠完成签到,获得积分10
9秒前
mingxi发布了新的文献求助10
9秒前
9秒前
酷波er应助dong采纳,获得10
10秒前
10秒前
搜集达人应助Dlan采纳,获得10
10秒前
11秒前
zmmm完成签到,获得积分10
11秒前
自由山槐发布了新的文献求助100
12秒前
cc完成签到 ,获得积分10
12秒前
贺贺发布了新的文献求助10
13秒前
13秒前
活泼菠萝完成签到,获得积分10
13秒前
Chang发布了新的文献求助10
13秒前
mingxi完成签到,获得积分10
16秒前
16秒前
16秒前
dddddd发布了新的文献求助10
17秒前
等待冬亦应助无尘采纳,获得20
18秒前
18秒前
FashionBoy应助里奥采纳,获得10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274