A Method for Extracting and Screening Main Feature Points Based on Salient Geometric Characteristics and NAD Features

点云 人工智能 计算机科学 计算机视觉 模式识别(心理学) 迭代最近点 稳健性(进化) 特征(语言学) 突出 特征向量 算法 生物化学 化学 语言学 哲学 基因
作者
Ziyang Wang,Bingyin Ren,Yong Dai
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115411-115411
标识
DOI:10.1088/1361-6501/ad704d
摘要

Abstract Point cloud alignment is an important task in the field of industrial automation and computer vision recognition. Aiming at the lack of robustness of traditional alignment algorithms in the face of cylindrical objects such as motors or highly symmetric objects, which in turn is prone to poor alignment accuracy or even alignment failure, a method of extracting and screening main feature points based on salient geometric properties is proposed to provide high-precision inputs for point cloud alignment and to improve the position estimation accuracy of symmetric targets. The salient geometric planes and curved surfaces in the target are utilized as the basis of feature point selection to extract more robust main feature points; and different feature descriptors are adopted to describe the feature points based on the target characteristics, which greatly preserves the original main contour and geometric information. A local feature descriptor normalized angle descriptor is designed based on the normal vector, normal angle and Euclidean distance of the point cloud, which is able to effectively remove the incorrect correspondences due to symmetry and feature similarity. Finally, the algorithm for obtaining the global maximum consensus set (GROR) based on the node and edge reliability of the correspondence graph is used to complete the coarse registration, and the iterative closest point algorithm is utilized to complete the fine registration. Experimental results on motor point clouds taken from different viewpoints show that the proposed registration strategy is visually and numerically superior to existing state-of-the-art methods, especially when there is only a single-frame point cloud of the target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小嘿嘿发布了新的文献求助10
刚刚
123发布了新的文献求助10
1秒前
weixiaosi发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
优美元蝶发布了新的文献求助30
3秒前
5秒前
小蘑菇应助FFFFF采纳,获得10
5秒前
7秒前
8秒前
无花果应助林夕赤赤采纳,获得10
8秒前
科研小趴菜完成签到,获得积分10
9秒前
Nowind完成签到,获得积分10
9秒前
10秒前
10秒前
桃桃发布了新的文献求助10
10秒前
11秒前
11秒前
优美元蝶完成签到,获得积分10
11秒前
12秒前
tong完成签到,获得积分10
13秒前
心灵美人龙完成签到,获得积分10
13秒前
雨的痕迹完成签到,获得积分10
14秒前
14秒前
15秒前
SciGPT应助甘特采纳,获得10
15秒前
耶耶发布了新的文献求助10
15秒前
科研通AI2S应助kike采纳,获得10
16秒前
16秒前
小蒋完成签到 ,获得积分10
16秒前
16秒前
称心的新之完成签到,获得积分10
16秒前
hui完成签到 ,获得积分10
17秒前
烟花应助大气百招采纳,获得10
17秒前
爆米花应助科研小宋采纳,获得10
17秒前
猪米妮发布了新的文献求助10
17秒前
17秒前
顾矜应助烤鸡翅采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979080
求助须知:如何正确求助?哪些是违规求助? 4231820
关于积分的说明 13181348
捐赠科研通 4022725
什么是DOI,文献DOI怎么找? 2200912
邀请新用户注册赠送积分活动 1213368
关于科研通互助平台的介绍 1129624